• Title/Summary/Keyword: phase shifts

Search Result 149, Processing Time 0.029 seconds

Frame synchronization Confirmation Technique Using Pilot Pattern

  • Song, Young-Joon
    • Journal of Communications and Networks
    • /
    • v.2 no.1
    • /
    • pp.69-75
    • /
    • 2000
  • A new frame synchronization confirmation technique using a pilot pattern of both uplink and downlink channels is proposed for W-CDMA (Wideband Code Division Multiple Access) system. It is shown that by using this technique, we can cancel the side lobe for autocorrelation functions of the frame synchronization words of pilot pattern have the maximum to-of-phase autocorrelation value "4" with two peak values equal in magnitude and opposite in polarity at zero and middle shifts. Due to this side lobe cancellation effect, therefore, the autocorrelation function of the frame synchronization words becomes ideal for the frame synchronization confirmation since double maximum correlation values equal in magnitude and opposite polarity at zero ad middle shifts can be achieved. This property can be used to double check frame synchronization timing and thus. improve the frame synchronization confirmation performance.

  • PDF

Effectiveness of a Turbo Direction Change for Reduction of Motion Artifact in Magnetic Resonance Enterography

  • Choi, Kwan-Woo;Son, Soon-Yong;Jeong, Mi-Ae
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.421-424
    • /
    • 2016
  • The purpose of this study is to evaluate an effectiveness of switching turbo direction to improve motion artifacts of small bowels and aorta. From June to October 2015, 60 patients suspected of having Crohn's disease were enrolled. The MR Enterography scans were performed using same protocol other than the turbo direction: with the Z phase encoding (group A) and with Y phase encoding (group B). Qualitative analysis of each group was performed to evaluate the effectiveness of switching turbo direction from Z to Y. As a result, the 5-point Likert scale for paired observers were $2.33{\pm}0.88$ for group A and $3.80{\pm}0.85$ for group B on dynamic contrast enhanced coronal images. In conclusion, group B is proved to be superior to group A and can lessen the motion artifacts derived from phase shifts.

A Wideband Interferometric Wavelength Shift Demodulator of Fiber Bragg Grating Strain Sensor

  • Song, Min-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.64-68
    • /
    • 1999
  • The performance of a fiber Bragg grating strain sensor constructed with 3$\times$3 coupler is investigated. A 3$\times$3 coupler Mach-Zehnder (M/Z) interferometer is used as wavelength discriminator, interrogating strain-induced Bragg wavelength shifts. Two quadrature-phase-shifted intensities are synthesized from the as-coupled interferometer outputs, and digital arctangent demodulation and phase unwrapping algorithm are applied to extract the phase information proportional to strain. Due to the linear relation between the input strain and the output of quadrature signal processing, signal-fading problems eliminated. In the experiment, a fiber grating that was surface adhered on an aluminum beam was strained in different ways, and the photodetector signals were transferred and processed in a computer-controlled processing unit. A phase recovery fo 7.8$\pi$ pk-pk excursion, which corresponds to ~650$\mu$strain pk-pk of applied strain, was demonstrated. The sensor system was stable over the environmental intensi쇼 perturbations because of the self-referencing effect in the demodulation process.

A Study on the Improvement of Accuracy of Surface Measurement in the Phase-Shifting Shadow Moir$\'{e}$ Method (위상이동 그림자 무아레방법을 이용한 형상측정법의 정확도 개선에 관한 연구)

  • 강영준;유원재;권용기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.96-102
    • /
    • 1998
  • In this study, the theory and application of phase-shifting shadow moire topography is focused on the non-contact measurement of object surfaces for practical use in the field of production engineering. Shadow moire topography has been studied during last few decades in the area of the optical physics, and now its mathmatical theory has been established. Generally, in case of the classical shadow moire topography, the sensitivity is a few tenths of millimeter in best cases. Here we tried the application of phase-shifting method to the conventional shadow moire topography. But the reference grating and the deformed grating are mutually dependent because it is impossible to obtain uniform phase shifts on the whole Held. Therefore it is difficult to use a phase-shifting method in shadow moire topography. However, it was shown that constant phase-shifting was able to be measured by moving both the grating and light source. Finally we obtained a better result by using this procedure and applied the phase-shifting shadow moire to three dimensional object measurement.

  • PDF

Grating phase measurement of photopolymer hologram by self-diffraction oscillations (자체회절 진동에 의한 포토폴리머 홀로그램의 격자 위상측정)

  • 경천수;성기영;곽종훈;최옥식;이윤우;이인원;서호형;이일항
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.4
    • /
    • pp.328-334
    • /
    • 1999
  • Methylene blue-sensitized photopolymerizable material based on acrylamide is investigated with two-wave energy coupling experiments. Differently from other studies, self-diffraction oscillations are observed and the grating phase is determined without applying external electric fields, moving nonlinear materials, and phase shifting one of two writing beams. The phase grating showed a phase shift of $\pm$50$^{\circ}$ with respect to the intensity grating. Modified Kogelnik's coupled wave equation considering the mixed gratings of phase and absorption gratings and nonzero spatial phase shifts of the gratings with respect to the intensity interference patterns formed during the two-wave energy coupling is discussed in detail to understand these phenomenon.

  • PDF

Finite thickness and tow phase shift effects on the mechanical behavior of plain weave textile composites (두께와 위상각의 변화가 평직복합재료 미세구조의 거동에 미치는 영향)

  • 우경식
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.11-24
    • /
    • 2000
  • In this paper, finite thickness and tow phase effects on the mechanical behavior were studied numerically for plain weave textile composites. Unit cell analysis based on a superposition method was employed to simulate uniaxial tensile loading condition and macro-element post-processor was used to reduce computer resource requirement. The effective moduli and micro-stress distribution were calculated for finite thick plain weave composites with phase shifts. Single layer and infinitely thick configurations were also considered for comparison.

  • PDF

Application of Forced Oscillation Technique for Pitch Dynamic Stability Derivatives of a Missile Model (미사일 모델의 피치 동안정미계수 측정을 위한 강제진동기법의 적용)

  • 김승필;조환기;백승욱
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.81-87
    • /
    • 2000
  • This paper presents an application of forced oscillation technique to measure pitch dynamic stability derivatives of a missile model in the low speed wind tunnel. The missile model is oscillated by D.C. electric servomotor with constant amplitudes and frequencies. Phase shift is determined as the difference of peak values between input and output signals from the dynamic stability balance installed at the center of gravity of the model. Stability derivatives were calculated by using phase shifts, amplitudes, forcing moments and input frequencies. Test results show the proper usage of the force oscillation technique with good damping effects.

  • PDF

Review of Metasurfaces with Extraordinary Flat Optic Functionalities

  • Hee-Dong Jeong;Hyuntai Kim;Seung-Yeol Lee
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.16-29
    • /
    • 2024
  • This paper presents a comprehensive review of metasurface technology, focusing on its significant role in extraordinary flat optic functionalities. Traditional optical components, though optimized, are bulky and less congruent with modern integrated electromagnetic and photonic systems. Metasurfaces, recognized as the 2D counterparts of bulk metamaterials, offer solutions with their planar, ultra-thin, and lightweight structures. Their meta-atoms are adept at introducing abrupt shifts in optical properties, paving the way for high-precision light manipulation. By introducing the key design principles of these meta-atoms, such as the magnetic dipole and Pancharatnam-Berry phase, various applications in wavefront shaping and beam forming with simple amplitude/phase manipulation and advanced applications including retroreflectors, Janus metasurfaces, multiplexing of optical wavefronts, data encryption, and metasurfaces for quantum applications are reviewed.

Design and Implementation of Flux-Driven Waveguide Ferrite Phase Shifters (자속밀도 제어형 페라이트 도파관 변위기 설계 및 제작)

  • 김동석;박동철;이용희;김윤명
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.3 no.1
    • /
    • pp.3-10
    • /
    • 1992
  • Flux-drive waveguide phase shifter is designed by twin-slab model. Measured differential phase shifts are smaller than the theoretical values by 8-9 percents. Measured insertion loss and VSWR of the phase shifter using TT73-2200 ferite are less than 0.45dB and 1.25 respectively, within pass band. The phase shifter using double-setup transformer shows wider bandwidth characteristics. Finally the reduced-height waveguide phase shifter using TT3-2900 ferrite shows very efficient suppression of higher-oreder modes.

  • PDF