DOI QR코드

DOI QR Code

A Wideband Interferometric Wavelength Shift Demodulator of Fiber Bragg Grating Strain Sensor

  • Song, Min-Ho (Department of Electrical Engineering, The pennsylvania State University, University Park)
  • Received : 1999.06.21
  • Published : 1999.09.01

Abstract

The performance of a fiber Bragg grating strain sensor constructed with 3$\times$3 coupler is investigated. A 3$\times$3 coupler Mach-Zehnder (M/Z) interferometer is used as wavelength discriminator, interrogating strain-induced Bragg wavelength shifts. Two quadrature-phase-shifted intensities are synthesized from the as-coupled interferometer outputs, and digital arctangent demodulation and phase unwrapping algorithm are applied to extract the phase information proportional to strain. Due to the linear relation between the input strain and the output of quadrature signal processing, signal-fading problems eliminated. In the experiment, a fiber grating that was surface adhered on an aluminum beam was strained in different ways, and the photodetector signals were transferred and processed in a computer-controlled processing unit. A phase recovery fo 7.8$\pi$ pk-pk excursion, which corresponds to ~650$\mu$strain pk-pk of applied strain, was demonstrated. The sensor system was stable over the environmental intensi쇼 perturbations because of the self-referencing effect in the demodulation process.

Keywords

References

  1. G. Meltz, W. W. Morey, and W. H. Glenn, Opt. Lett. 14, 823 (1989) https://doi.org/10.1364/OL.14.000823
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997) https://doi.org/10.1109/50.618377
  3. A. D. Kersey, T. A. Berkoff, and W. W. Morey, Electron. Lett. 28, 236 (1992) https://doi.org/10.1049/el:19920146
  4. M. Song, B. Lee, S. B. Lee, and S. S. Choi, Opt. Lett. 22, 790 (1997) https://doi.org/10.1364/OL.22.000790
  5. Y. L. Lo, IEEE Photon. Technol. Lett. 10, 1003 (1998) https://doi.org/10.1109/68.681298
  6. S. M. Melle, K. Liu, and R. M. Measures, IEEE Photon. Technol. Lett. 4, 516 (1992) https://doi.org/10.1109/68.136506
  7. M. Song, S. B. Lee, S. S. Choi, and B. Lee, 2nd Op-toelectronics & Communications Conference (OECC) Technical Digest, (Seoul, Korea, 1997), paper 11Dl-5
  8. K. P. Koo, A. B. Tveten, and A. Dandridge, Appl. Phys. Lett. 41, 616 (1981) https://doi.org/10.1063/1.93626
  9. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, IEEE J. Quantum Electron. 18, 1647 (1982) https://doi.org/10.1109/JQE.1982.1071416
  10. S. K. Sheem, J. Appl. Phys. 52, 3865 (1981) https://doi.org/10.1063/1.329853
  11. S. K. Sheem, Appl. Phys. Lett. 37, 869 (1980) https://doi.org/10.1063/1.91867
  12. A. Dandridge, C. C. Wang, A. B. Tveten, and A. M. Yurek, Proc. 10th Int. Conf. Optic. Fiber Sensors (OFS), (Glasgow, UK, SPIE, Oct. 1994), 2360, 549
  13. K. Takada, IEEE Photon. Technol. Lett. 4, 1174 (1992) https://doi.org/10.1109/68.163770

Cited by

  1. A PDMS-Coated Optical Fiber Bragg Grating Sensor for Enhancing Temperature Sensitivity vol.15, pp.4, 2011, https://doi.org/10.3807/JOSK.2011.15.4.329
  2. Wavelength–time domain transformation-based demodulator for wavelength-encoded optical sensor vol.57, pp.06, 2018, https://doi.org/10.1117/1.OE.57.6.066111