• Title/Summary/Keyword: phase range

검색결과 4,298건 처리시간 0.03초

Improvement of a Pound-Drever-Hall Technique to Measure Precisely the Free Spectral Range of a Fabry-Perot Etalon

  • Seo, Dong-Sun;Park, Chongdae;Leaird, Daniel E.;Weiner, Andrew M.
    • Journal of the Optical Society of Korea
    • /
    • 제19권4호
    • /
    • pp.357-362
    • /
    • 2015
  • We examine the principle of a modified Pound-Drever-Hall (PDH) technique to measure the free spectral range of a Fabry-Perot etalon (FPE). The FPE's periodic transmission of phase-modulated light allows us to adopt a sampling theorem to develop a new relationship for the PDH error signal. This leads us to find the key parameters governing the measurement accuracy: the phase modulation index ${\beta}$ and the FPE finesse. Without any additional complexity for background noise reduction, we achieve a measurement accuracy of 0.5 ppm. The improvement is mainly attributed to the wide-band phase modulation approaching ${\beta}=10$, and partly to the use of both reflected and transmitted light from the FPE and good FPE finesse.

The Oscillation Characteristics of a Magneticfluid Plug in Curved Tube (곡관내 자성유체 PLUG의 진동특성)

  • Chun, U.H.;Lee, H.N.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제3권3호
    • /
    • pp.46-57
    • /
    • 1995
  • The aim of the present study is to provide fundamental informations for the development of magneticfluid actuator. To achieve the aim, oscillation characteristics of the magneticfluid plug are investigated by experiment for the various length and position of the magneticfluid plug and the frequency of magnetic field. The oscillation characteristics are obtained. Amplitude, natural frequency, phase shift and damping ratio, are compared with theoretical values. From the study, the following conclusive remarks can be made. The experimental equation for the magnetic field is obtained. The critical magneticfluid length exists and its value is about 70mm. The range of the damping ratio and fluid loss coefficient obtained by experiment are 0.1~0.2 and 30~100, respectively. Comparison between experimental and theoretical results of oscillation characteristics shows good agreement in the high frequency range. Meanwhile, in the low frequency range, there appears little discrepancies(5% in the frequency and amplitude and 10% in phase difference and damping ratio) with each other.

  • PDF

Incoherent Frequency 12-tupling Microwave Signal Generation Scheme Based on Cascade Modulators

  • Teng, Yichao;Zhang, Pin;Xu, Xin;Zhang, Baofu
    • Current Optics and Photonics
    • /
    • 제5권4호
    • /
    • pp.466-476
    • /
    • 2021
  • Frequency-multiplication technology based on microwave photonic principles can be used to generate microwave and millimeter wave signals with a wide frequency tuning range. However, the existing cascaded external modulation frequency-tupling scheme needs to ensure the phase coherence of the modulated Radio Frequency (RF) signal, while the phase modulation directly limits the frequency tuning range of the external modulation frequency multiplication. In this paper, a novel approach for generating an incoherent frequency 12-tupling signal with cascade modulation is proposed. The structure of cascaded dual-parallel Mach-Zehnder modulators can generate a frequency 12-tupling signal. The proposed structure uses no filter or phase control of the RF driving signal. Microwave photonic frequency-tupling was realized under incoherent conditions. Software simulations and experiments validated the proposed structure and proved that it can generate frequency 12-tupling microwave signals under incoherent conditions. Both the frequency range and reliability of the frequency-tupling system has been improved by the proposed structure.

Broadband Instantaneous Frequency Measurement System Based on the Dual Paths of the Stimulated Brillouin Scattering Effect

  • Jiahong Zhang;Weijie Liao
    • Current Optics and Photonics
    • /
    • 제7권4호
    • /
    • pp.378-386
    • /
    • 2023
  • A wideband instantaneous frequency measurement (IFM) system is been proposed, designed and analyzed. Phase modulation to intensity modulation conversion is implemented based on the stimulated Brillouin scattering (SBS) effect, and the microwave frequency can be measured by detecting the change in output power. Theoretical analysis shows that the frequency measurement range can be extended to 4fb by adjusting the two sweeping signals of the phase modulators with a difference of 2fb. The IFM system is set up using VPI transmission maker software and the performances are simulated and analyzed. The simulation results show that the measurement range is 0.5-45.96 GHz with a maximum measurement error of less than 9.9 MHz. The proposed IFM system has a wider measurement range than the existing SBS-based IFM system.

Low Phase Noise VCO Using Novel Harmonic Control Circuit Based on Composite Right/Left-Handed Transmission Line (혼합 우좌향 전송 선로 기반의 새로운 고조파 조절 회로를 이용한 저위상 잡음 전압 제어 발진기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제47권1호
    • /
    • pp.84-90
    • /
    • 2010
  • In this paper, a novel voltage-controlled oscillator (VCO) using the harmonic control circuit based on the composite right/left-handed (CRLH) transmission lines (TLs) is presented to reduce the phase noise without the reduction of the frequency tuning range and miniaturize the circuit size. The phase noise is reduced by the novel harmonic control circuit having the short impedances for the second- and third-harmonic components. The proposed harmonic control circuit is designed by using the CRLH TLs with the dual-band characteristic by the frequency offset and phase slope of the CRLH TLs. The high-Q resonator has been used to reduce the phase noise, but has the problem of the frequency tuning range reduction. However, the frequency tuning range of the proposed VCO has not been reduced because the phase noise has been reduced without the high-Q resonator. The miniaturization of the circuit size is achieved by using the CRLH TLs instead of the conventional right-handed (RH) TLs. The phase noise of VCO is -119.17 ~ -117.50 dBc/Hz at 100 kHz in the tuning range of 5.731 ~ 5.938 GHz.

Unambiguous Evidence for Phase Transitions of Oleic Acid in Pure Liquid State by Near-Infrared Spectroscopy and Pricipan Comaonent Analysis

  • Nobuya Yokochi;Makio Iwahashi;Masao Suzuki;Yukihiro Ozaki
    • Near Infrared Analysis
    • /
    • 제1권2호
    • /
    • pp.21-27
    • /
    • 2000
  • Temperature-dependent changes in near-infrared (NIR) spectra have been measured for oleic acid, and nonanoic acid in the pure liquid state. Particular attention has been paid to the 5400-4800 cm$\^$-1/ region where a number of combination bands appear. The NIR spectra of oleic acid show that a band at 5303 cm$\^$-1/ increases with temperature while that at 5270 cm/sup-1/ decreases. It ha been found from their second derivative spectra that these spectral changes take place stepwisely with two break points at 30 and 53$\^{C}$, which correspond to the phase transition temperatures oleic acid reported previously. Principle component analysis (PCA) has been carried out for the NIR spectra of oleic acid in the 5400-4800 cm$\^$-1/ region measured over a temperature range of 15-80$\^{C}$. core plots of the first and second principal components (PCs) show that the NIR spectra are classified into three groups; the spectra measured in the temperature range of 15-30$\^{C}$, those in the range of 31-53$\^{C}$, and those in the range of 54-80$\^{C}$. These temperature ranges correspond to those for quasi-smectic liquid crystal, disordered liquid crystal, and isotropic liquid of oleic acid in the pure liquid state. In other words, PCA provides unambiguous evidence for the phase transitions. similar studies have been carried out for petroselinic acid and nonanoic acid in the pure liquid states, but they do not show any evidence for phase transitions.

Measurement of the Phase Errors of AWG by Using the Monte-Carlo Analysis (몬테카를로 분석 방법을 이용한 AWG의 위상 오차 측정)

  • Go, Chun-Soo;Oh, Yong-Ho;Lim, Sung-Woo
    • Korean Journal of Optics and Photonics
    • /
    • 제22권5호
    • /
    • pp.207-213
    • /
    • 2011
  • We propose a new method to measure the phase errors of an AWG(arrayed waveguide grating) through Monte-Carlo analysis. In the frequency domain method, we used the Monte-Carlo method to fit the theory to the experimental results. The phase and amplitude values are obtained from the fitted theory. To verify our method, we carried out a simulation. Some phase errors were included to make a virtual interferogram and we measured the actual AWG phase errors from it by our method. The results show that our method gives good results if the laser tuning range is larger than 1.7 times of the AWG FSR(free spectral range) and if the phase errors are within ${\pm}50^{\circ}$.

Efficient Translational Motion Compensation for Micro-Doppler Extraction of Ballistic Missiles

  • Jung, Joo-Ho;Kim, Si-Ho;Choi, In-O;Kim, Kyung-Tae;Park, Sang-Hong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.129-137
    • /
    • 2017
  • When the micro-Doppler (MD) image of a ballistic missile is derived, the translational motion compensation (TMC) method is usually applied to the inverse synthetic aperture radar (ISAR) image, but yields poor results because of the micro-motion of the ballistic missile. This paper proposes an efficient TMC method to obtain a focused MD image of a ballistic missile engaged in complicated micro-motion. During range alignment, range profiles (RPs) are coarsely aligned by using the 1D entropy cost function of RPs as a mark, then the coarsely-aligned RPs are fine-aligned by using the minimum 2D entropy of the MD image. During phase adjustment, the gradient of the phase error is appropriately weighted and added to the previous phase error to further fine-tune the aligned RPs. In simulations using the point scatterer model and the measured data from the real missile model, the proposed method provided better image focus than the existing method.

Two-Phase Hybrid Forward Convertor with Series-Parallel Auto-Regulated Transformer Windings and a Common Output Inductor

  • Wu, Xinke;Chen, Hui
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.757-765
    • /
    • 2013
  • For conventional interleaved two-phase forward converters with a common output inductor, the maximum duty cycle is 0.5, which limits the voltage range and increases the difficulty of the transformer's optimization. A new two-phase hybrid forward converter with series-parallel auto-regulated transformer windings is presented in this paper. With interleaved control signals for the two phases, the secondary windings of the transformers can work in series when the duty cycle is larger than 0.5, and they can work in parallel when duty cycle is lower than 0.5. Therefore, the maximum duty cycle is extended and the turns ratio of the transformer can be optimized. Duty cycle dependent auto-regulated windings result in the steady states of the converter being different in different duty cycle ranges (D>0.5 and D<0.5). Fortunately, the steady state gains of the proposed hybrid converter are identical at different duty cycle ranges, which means a stepless shift between two states. A prototype is built to verify the theoretical analysis. A conventional control loop is compatible for the whole input voltage range and load range thanks to the stepless shifting between the different duty cycle ranges.

VELOCITY ESTIMATION OF MOVING TARGETS BY AZIMUTH DIFFERENTIALS OF SAR IMAGES;PRELIMINARY RESULTS

  • Park, Jeong-Won;Jung, Hyung-Sup;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.625-628
    • /
    • 2007
  • We present an efficient and robust technique to estimate the velocity of moving targets from a single SAR image. In SAR images, azimuth image shift is a well known phenomenon, which is observed in moving targets having slant-range velocity. Most methods estimated the velocity of moving targets from the distance difference between the road and moving targets or between ship and the ship wake. However, the methods could not be always applied to moving targets because it is difficult to find the road and the ship wake. We adopted a method estimating the velocity of moving targets from azimuth differentials of range-compressed image. This method is based on an assumption that Doppler center frequency shift of moving target causes a phase difference in azimuth differential values. The phase difference is linearly distorted by Doppler rate due to the geometry of SAR image. The linear distortion is eliminated from phase removal procedure, and the constant phase difference is estimated. Finally, range velocity estimates for moving targets are retrieved. This technique is tested using an ENVISAT ASAR image in which several unknown ships are presented. The theoretical accuracy of this technique is discussed by SAR simulation. The advantages and disadvantages of this method over the conventional method are also discussed.

  • PDF