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We examine the principle of a modified Pound-Drever-Hall (PDH) technique to measure the free spectral 

range of a Fabry-Perot etalon (FPE). The FPE’s periodic transmission of phase-modulated light allows 

us to adopt a sampling theorem to develop a new relationship for the PDH error signal. This leads us 

to find the key parameters governing the measurement accuracy: the phase modulation index β  and the 

FPE finesse. Without any additional complexity for background noise reduction, we achieve a measurement 

accuracy of 0.5 ppm. The improvement is mainly attributed to the wide-band phase modulation approaching 

β  = 10, and partly to the use of both reflected and transmitted light from the FPE and good FPE finesse.
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I. INTRODUCTION

Fabry-Perot etalons (FPEs) have many applications in 

the fields of optical communications and photonics. High-

finesse FPEs have been used for linewidth reduction or 

frequency stabilization of a semiconductor laser, optoelectronic 

oscillators, WDM filtering, and so on [1-3]. They have also 

been used for repetition-rate multiplication of pulsed lasers 

by spectral filtering [4-6]. Recently, an FPE was used inside 

a mode-locked laser cavity to stabilize or to lock the laser 

comb to the FPE transmission (TX) peaks [7, 8]. Having 

several hundred ultrastable comb lines locked to the FPE-TX 

peaks opened new application fields in WDM optical networks 

and photonics [7]. For diverse applications, precise measurement 

of the free spectral range (FSR) of an FPE is required. For 

example, to lock mode-locked spectral comb lines to intracavity 

FPE-TX peaks, the mode-locked laser frequency should 

stay within 1 ppm (parts per million) of the FSR of the 

FPE [7, 8]. Conventionally, the FSR of an FPE has been 

measured by examining its transmission spectrum as the 

injected laser frequency is scanned [9]. This method is simple 

but has poor measurement accuracy, due to the resolution 

limit of the optical spectrum analyzer used to perform the 

measurement. Recently a new technique, a modified Pound-

Drever-Hall (PDH) method, was suggested [10], in which 

probe light was phase-modulated around the FSR of an FPE 

and injected into the FPE, and the reflected (or transmitted) 

light was monitored. The instantaneous amplitude of the 

reflected light gave information about the difference between 

the phase modulation (PM) frequency (fpm) and FSR (fFSR). 

In Ref. [10] the authors achieved a measurement accuracy 

of 100 ppm. Ozdur et al., reported that the measurement 

accuracy was limited by unwanted static modulation of the 

background multiple-reflection noise [11]. To reduce the 

background noise, a slow time-varying (time-delay) modulation 

technique using a piezoelectric translator (PZT) was adopted, 

and resulted in a measurement accuracy improvement of 

two orders of magnitude to 1 ppm [11]. Here, we demonstrate 

a simple setup that is similar to the scheme shown in [10], 

without the use of a PZT-based slow time-varying modulator 

loop to remove static modulation noise. In section II we 

examine the principle of the measurement technique and 

explain the error-signal generation with a simple conceptual 

diagram. We adopt a well-known sampling theorem and 

extract the key parameters governing the measurement 

sensitivity: the phase-modulation depth of the injected light 
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FIG. 1. Schematic diagram of the setup to precisely measure 

the FSR of an FPE (abbreviations can be found in the text). 

(a)

(b)

(c)

FIG. 2. Conceptual diagram of error-signal generation for the 

FPE-FSR measurement: (a) δ > 0, (b) δ = 0, and (c) δ < 0. The 

carrier arrow indicates the optical frequency of the probe light 

to be scanned at 20 Hz, and the sideband arrows represent the 

sideband spectral lines generated by the sinusoidal phase 

modulation of the probe light. The pink curves represent the 

periodic transmittance of the FPE.

and the FPE finesse. In section III we discuss experimental 

results utilizing both the transmitted and reflected light of 

the FPE. We achieve a measurement accuracy of 0.5 ppm, 

a factor of two better than the previously reported accuracy, 

without requiring the additional complexity of a static 

modulation control loop. Finally, we present our conclusion 

in section IV.

II. PRINCIPLE OF THE FSR MEASUREMENT

The experimental setup to measure the FSR of an FPE 

is shown in Fig. 1 [12]. Probe light from a commercially 

available external cavity laser is scanned over an FPE-TX 

peak. The scanning frequency is set to 20 Hz. Unlike in 

the conventional method, the probe light is strongly phase 

modulated (modulation index β ~ 10) at a frequency near 

the FSR of an FPE, and the phase-modulated light is 

injected to the FPE. The suggested measurement scheme 

relies on the alignments of the PM sidebands with respect 

to FPE transmission peaks, resulting in the spectral amplitude 

modulation of the sidebands. Details will be discussed 

later. In the specific measurement performed here, the FPE 

consists of 15-mm air-spaced concave (radius 50 cm) and 

flat mirrors with 270 finesse and 0.01 ppm/K temperature 

dependence, respectively. The FSR provided by the vendor 

is 9.99 GHz. The reflected and transmitted light from the 

FPE are detected by separated photodetectors. The individual 

detector output for transmitted or reflected light is selected 

alternately by a switch, amplified by a radio-frequency 

(RF) amplifier, and mixed with the phase-modulator drive 

signal. To maximize the mixer output, we adjust the phase 

of the detector output by controlling an RF delay line. The 

mixer output, synchronized by the laser scanning frequency 

(20 Hz), is averaged and measured by a sampling scope. 

Hereafter we refer to the sampling scope trace as the 

“error signal”, representing the frequency difference between 

the PM frequency fpm and fFSR. The error signals for both 

transmitted and reflected light are obtained from the same 

circuit through the selectable switch. We monitor the error 

signal as we tune fpm around fFSR.

Next we discuss the principle of error-signal generation. 

Strong sinusoidal PM at fpm generates a large number (~2

β) of upper and lower sidebands spaced by fpm around the 

unmodulated carrier frequency (here, the frequency of the 

probe light). The amplitude of the sidebands is a function 

of Jn(β), the Bessel function of the first kind of order n 

(positive for upper sidebands and negative for lower sidebands). 

Since the PM waveform occupies a large bandwidth (~2β×fpm), 

this is called “wide-band” PM. Different alignments of the 

individual PM sidebands with respect to the FPE-TX peaks 

yield different losses, resulting in spectral amplitude modulation 

of the injected PM light. The amount of amplitude modulation, 

indicating the frequency difference δ = fpm - fFSR, is detected 

by mixing the detector output and phase-modulator drive 

signal. To be explicit about the measurement principle, we 

will consider following three cases (δ > 0, δ = 0, and δ < 

0) assuming that the PM light has four sidebands (order n 

= ±1 and ±2). 

2.1. δ > 0 (fpm > fFSR) 

In this case, the spacing between the PM sidebands is 

greater than fFSR. Then the PM sidebands may be determined 

with respect to the FPE transmission peaks, as shown by 

the arrows in Fig. 2(a). By scanning the optical (carrier) 

frequency ν of the probe light, we can shift the spectrum 

groups from the pink to black to blue arrows. At a relatively 

low carrier frequency (νL, pink arrows), the upper sidebands 

are enhanced but the lower sidebands are suppressed, after 

passing the FPE. This frequency-dependent loss induces the 

envelope (or amplitude) modulation at fpm for the injected 

PM light. For clarity of the envelope modulation, we adopt 

a well-known sampling theorem. All of the PM sidebands 

shown in Fig. 2 are then mapped on a single FPE-TX 
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(a)

(b)

FIG. 3. Spectral mapping of the FPE-passed, PM spectral 

lines (arrows) and expected error signals (yellow lines): (a) δ 

> 0 and (b) δ = 0. The amplitude of the arrows shows the 

frequency-dependent loss  passing through the FPE.

curve near the probe-light (carrier) frequency, as shown in 

Fig. 3 (for simplicity, we only show the carrier and order 

n = ±1 sidebands). In Fig. 3, we count the frequency-

dependent loss experienced by passing (or transmitting) the 

FPE. The sampling frequency is fFSR, as implicitly shown 

in Fig. 3(a). As shown in Fig. 3, the frequency spacing 

between the mapped spectral lines becomes δ. Now the mapped 

arrows are interpreted as the instantaneous frequencies of 

the sampled PM waveform. In other words, the instantaneous 

frequency of the sampled PM waveform swings periodically 

over the frequency range marked by the arrows (i.e. the 

frequency range between the highest-order lower and upper 

sidebands) in the mapped domain. Then the FPE acts as a 

frequency-to-amplitude converter for the sampled PM waveform, 

such that the instantaneous FPE output is determined by 

its instantaneous frequency and the FPE-TX curve (i.e. 

FPE finesse). For a given FPE (finesse), the error signal 

(i.e. mixer output in Fig. 1) depends on the amount of 

frequency deviation at the mapped domain: the number of 

sidebands, and the spacing between the mapped sidebands 

(i.e. δ). Noting that the number of sidebands of the 

wide-band PM waveform is given by 2(β +1), we obtain 

the amount of frequency deviation as 2(β +1)δ for the 

sampled PM waveform (i.e. in the mapped frequency domain). 

This means that the error signal is proportional to 2(β +1)δ.

At a middle frequency (νM, black arrows in Fig. 2(a)), 

the center (carrier) frequency is enhanced, while both the 

lower and upper sidebands are equally suppressed. Mapped 

PM spectra (after passing the FPE) are represented in Fig. 

3(a) by black arrows. Envelope modulation is also observed; 

however, the modulation frequency is doubled (i.e. modulated 

at 2*fpm) by swinging periodically between the lower and 

upper sidebands depicted in Fig. 3(a) by black arrows. 

Therefore, no mixer output appears. Finally, at a relatively 

high frequency (νH, blue arrows in Fig. 2(a)), the upper 

sidebands are suppressed, while the lower sidebands are 

enhanced. Again, this induces envelope modulation at fpm 

of the injected PM light, but the phase is reversed compared 

to the case of low frequency νL (pink arrows). At the 

mapped domain this is evident, as shown in Fig. 3(a).

Now we can combine all cases and predict the mixer 

output (i.e. error signal) as a function of ν (i.e. as the probe 

light is scanned) at a fixed δ, as schematically shown by 

the yellow line in Fig. 3. The shape of the error signal 

follows approximately the first-order derivative of the FPE 

transmission curve. Note again that the peak-to-peak amplitude 

of the error signal is proportional to the frequency deviation 

2(β +1)δ, as schematically shown in Fig. 3(a). 

2.2. δ = 0 (fpm = fFSR) 

Since fpm = fFSR, the carrier and sidebands of the injected 

PM light experience the same loss, even with scanning of 

the input optical frequency ν, as shown in Fig. 2(b). At 

the mapped spectral domain, all the PM spectral lines 

overlap (no frequency deviation exists) and no envelope 

modulation or error signal is observed, as shown in Fig. 

3(b). 

2.3. δ < 0 (fpm < fFSR) 

Again, the different alignments (with respect to the FPE-TX 

peaks) of the PM sidebands introduce frequency-dependent 

loss (i.e. spectral amplitude modulation). However, the 

modulation phase is reversed compared to the case of δ > 

0. For example, at the probe light frequency νH (yellow 

arrows in Fig. 2(c)) the upper sidebands are suppressed, 

while the lower sidebands are enhanced, and so on. Now 

we can draw the error signal at a fixed δ, which is the 

phase-reversed shape of the case of δ < 0 in Fig. 3(a). 

In summary, to find the exact value of the FSR (δ = 0), 

we should sweep fpm toward the direction that reduces the 

amplitude of the error signal, and then pick the value of 

fpm where the amplitude becomes zero. However, in practice, 

it is difficult to directly find the frequency at zero 

amplitude, due to background and other noises. Therefore, 

we tune fpm from fpm < fFSR to fpm > fFSR to pass fpm = 

fFSR, then plot the amplitude of the error signal versus fpm 

to find the zero-crossing point.

Noting that the mixer output Vmix is proportional to δ 

and β, as discussed above, we can set up a generalized 

equation for the wide-band PM waveform as follows:

(1)

where Vo is a constant, and the transmittance of the FPE 

T(ν) is given by
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FIG. 4. Transmission (red line) and reflection (blue line) 

characteristics of the FPE used in our experiments. 

FIG. 5. Measured error signals for several values of fpm:: (a) 

fFSR + 1 MHz, (b) ~ fFSR, and (c) fFSR - 1 MHz. The 1-MHz 

deviation corresponds to the 100-ppm accuracy previously 

reported result in [10].

(2)

where R is the mirror reflectance of the FPE. 

If δ is small, Vmix(ν) becomes

(3)

where T ′ is the first derivative of T. This clearly confirms 

that the error signal follows the first derivative of the 

FPE-TX curve, and that its peak-to-peak amplitude is 

proportional to β, δ, and the maximum value of T ′ (i.e. 

FPE finesse). To improve the FSR measurement accuracy 

of a given FPE (T ′), we aim for the strongest PM of the 

probe light. The wide-band PM scheme suggested here 

improves the measurement sensitivity by approximately a 

factor of β. For narrow-band PM (β << 1), equation (1) 

reduces to the equation given in [10].

Now let us consider the reflected light, where the FPE 

reflectance R(ν) = 1 – T(ν). Since R′(ν) = – T′(ν), the error 

signal becomes exactly same but with phase reversed from 

that of the transmitted light. As expected, no error signal 

appears for both transmitted and reflected signals at fpm = 

fFSR. However, if we apply both the reflected and 

transmitted light that give complementary information, then 

we may reduce the noise and/or measurement error.

III. EXPERIMENTAL RESULTS

Figure 4 shows the transmittance and reflectance characteristics 

of the FPE used in our experiment, as a function of optical 

frequency ν. Due to interference from multiple reflections, 

the reflectance curve shows some undulation. As discussed, 

the mixer output (error signal) in Fig. 1 follows approximately 

the first derivative of the transmission or reflection curve 

of the FPE (see Fig. 5). Figure 5 shows the error signals 

for three typical values of fpm: fpm = fFSR + 1 MHz, ∼ fFSR, 

and fFSR – 1 MHz. For comparison, we intentionally chose 

the δ = ±1 MHz, corresponding to the previously reported 

accuracy of 100 ppm [10] with a similar setup to ours. 

The error signal was averaged by the sampling scope to 

remove random noise. The blue and red lines represent the 

error signals for reflected and transmitted light respectively. 

As expected, the reflected and transmitted error signals (at 

fixed δ) show similar shapes, but reversed phases. At fpm 

∼ fFSR, the amplitude of the individual error signal is 

suppressed and becomes negligible. Passing the point fpm = 

fFSR, both error signals have their phases reversed. We 

understand that the ambiguity of the error signals near fpm 

= fFSR is induced by the static modulation noise [10] and 

spectral asymmetry of the sidebands of the injected PM 

light.

Next, we measure the peak-to-peak amplitudes of the 

error signals for both transmitted and reflected light as we 

change fpm, and plot the results in Fig. 6. To avoid the 

ambiguity of the error signals near fpm = fFSR, we set the 

zero-crossing point of the plot as the condition for fpm = 

fFSR. Using linear fits to the data (black straight lines), we 

find that the zero-crossing points for the reflected and 

transmitted light are 9.995765 GHz and 9.995779 GHz 

respectively. The difference may come from added noise 

and measurement error. We take the crossing point of both 

fitting lines, and find it is 9.995771 GHz. The crossing 

point is inherently less sensitive to background noise and/or 

the ambiguity of the measurement. Therefore we take the 



Improvement of a Pound-Drever-Hall Technique to Measure Precisely the Free … - Dong-Sun Seo et al. 361

FIG. 6. Amplitude of the error signal as a function of fpm. The 

inset (top) shows details near the zero-crossing points.

crossing point of both fitting lines as the value of fFSR. 

Here we are able to replicate measurement within 5 kHz 

accuracy, corresponding to 0.5 ppm. The two orders of 

magnitude in accuracy improvement over the previous 

result [10] is attributed mainly to the wide-band PM of the 

probe light, and partly to the utilization of both lights and 

good FPE finesse. However, phase modulation that is too 

strong may induce severe asymmetry in the sidebands, 

resulting in undesirable amplitude modulation of the PM 

waveform. In the peak-error-amplitude versus fpm plot, the 

data points should be on a straight line, as expected from 

equation (3), regardless of the polarity of δ. However, due 

to noise and measurement error, the data groups for δ > 0 

and for δ < 0 may not be on the same line, as observed 

in Fig. 3 in [10] and Fig. 5 in [11]. The scheme based on 

both reflected and transmitted light can effectively reduce 

the ambiguity when the data groups are not on a straight 

line. Further improvement of the measurement is expected 

by using balanced detection of the reflected and transmitted 

light. This may also reduce the static modulation noise 

mentioned in [10].

IV. CONCLUSION

To measure the precise value of the FSR of an FPE, we 

used a modified Pound-Drever-Hall (PDH) method. We 

introduced a simple and explicit conceptual diagram of the 

measurement principle. Noting the periodic transmission/

reflection characteristics of an FPE, we adopted a well-known 

sampling theorem and developed a generalized equation for 

the PHD output. This equation showed that the measurement 

accuracy depends on the PM index and the FPE finesse. 

Therefore, we applied wide-band PM with β  = 10 (maximum 

value obtained in our setup) as the probe light. Previously, 

either the FPE reflected or (complementary) transmitted 

light has been used, but our measurements used both reflected 

and transmitted light to improve the measurement accuracy 

further, and we measured the FSR within 0.5 ppm. This 

result is two orders of magnitude better than the previous 

result [10] using a similar scheme. The improvement is attributed 

mainly to the strong PM of the probe light, and partly to 

the utilization of both the reflected and transmitted light 

and the good finesse of the FPE we employed. The 

suggested method using both streams of light will be more 

powerful when the noise significantly affects the PDH 

output signal, such that the PDH error data do not lie on 

a line.
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