• Title/Summary/Keyword: phase behavior

Search Result 2,971, Processing Time 0.027 seconds

Computer Simulations of two kinds of Polydisperse Hard-Sphere Systems; Atomic Systems and Colloidal Suspensions

  • Shimura Tsutomu;Yamazaki Hiroyuki;Terada Yayoi;Tokuyama Michio
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.21-22
    • /
    • 2003
  • We perform two kinds of computer simulations on polydisperse hard-sphere systems; a molecular-dynamics simulation on atomic systems and a Brownian-dynamics simulation on colloidal suspensions. Analyses of the mean square displacement, the radial distribution function, and the pressure suggest that there exist three phase regions, a liquid phase region, a metastable phase region, and a crystal phase region, where the freezing and melting points are shifted to the values higher than in monodisperse case. It is also shown that the long-time behavior of colloidal suspensions is exactly the same as that of atomic systems.

  • PDF

Multi-Phase Optimization of Quill Type Machine Structures(1) (Static Compliance Analysis & Multi-Objective Function Optimization) (퀼형 공작기계구조물의 다단계 최적화(1) (정강성 해석 및 다목적함수 최적화))

  • Lee, Yeong-U;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.155-160
    • /
    • 2001
  • To achieve high precision cutting as well as production capability in the machine tool, it is needed to develop excellent rigidity statically, dynamically and thermally as well. In order to predict the qualitative behavior of a machine tool, simultaneous analysis of mechanics and heat transfer is required. Generally, machine tool designers have solved designing problems based on partial estimation of the specified rigidity. This study clears the inter-relationship between therm, and propose multi-phase optimization of machine tool structure using a genetic algorithm. The multi-phase solution method is consists of a series of mechanical design problem. At this first phase of static design problem, multi-objective optimization for the purpose of minimization of the total weight and static compliance minimization is solved using the Pareto Genetic Algorithm.

  • PDF

Microstructurally sensitive crack closure (微視組織에 敏感한 균열닫힘 현상)

  • 김정규;황돈영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.898-905
    • /
    • 1986
  • In order to obtain the microstructure improving fatigue crack propagation resistance of steels, fatigue crack propagation behavior of martensite-ferrite dual phase steels is investigated in terms of crack deflection and crack closure. The results obtained are as follows; (1) .DELTA.K$_{th}$ and fatigue crack propagation resistance in low .DELTA.K region increases with increasing hardness of second phase. But the difference of this crack propagation resistance decreases with increasing .DELTA.D. (2) In low .DELTA.K region, crack closure increases with increasing hardness of second phase, when the materials have all the sam volume fractionof second phase, or when yield strengths are similar in all materials. (3) These crack closure can be explained by fracture surface roughness due to crack deflection.n.

Numerical Analysis on the Performance for Automobile Heat Storage System Using Phase Change Materical (상변화물질을 이용한 자동차용 열저장 시스템의 성능을 위한 수치 해석)

  • 이관수;김혁제;백창인;송영길;한창섭;김등진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.187-198
    • /
    • 1996
  • In this study, the performance of an automobile heat storage system using PCM is numerically simulated. For the analysis of system performance. The phase-change of the PCM and the transient forced convective heat transfer for the HTF are considered simultaneously as a conjugate problem. The phase-change behavior is effectively analyzed using a concept of thermal resistance. From the correlations of phase change rate and heat transfer due to the variations of flow rate of HTF around PCM, the automobile heat storage system performance is predicted. The present results amy be used as the fundamental information for the design of automobile heat storage system.

  • PDF

Competition between Phase Separation and Crystallization in a PCL/PEG Polymer Blend Captured by Synchronized SAXS, WAXS, and DSC

  • Chuang Wei-Tsung;Jeng U-Ser;Sheu Hwo-Shuenn;Hong Po-Da
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.45-51
    • /
    • 2006
  • We conducted simultaneous, small-angle, X-ray scattering/differential scanning calorimetry (SAXS/DSC) and simultaneous, wide-angle, X-ray scattering (WAXS)/DSC measurements for a polymer blend of poly($\varepsilon$-caprolactone)/poly(ethylene glycol)(PCL/PEG). The time-dependent SAXS/DSC and WAXS/DSC results, measured while the system was quenched below the melting temperature of PCL from a melting state, revealed the competitive behavior between liquid-liquid phase separation and crystallization in the polymer blend. The time-dependent structural evolution extracted from the SAXS/WAXS/DSC results can be characterized by the following four stages in the PCL crystallization process: the induction (I), nucleation (II), growth (III), and late (IV) stages. The influence of the liquid-liquid phase separation on the crystallization of PCL was also observed by phase-contrast microscope and polarized microscope with 1/4$\lambda$ compensator.

Effects of the Pre-strain on Mechanical Properties of the Solid-Phase Formed Thermoplastic Composite (고상성형된 열가소성 복합재료의 성형 변형률이 기계적 특성에 미치는 영향)

  • Lee, Jung-Hui;Jo, Hyeon-Cheol;Lee, Gyeong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1220-1226
    • /
    • 2001
  • This study investigates the effects of the pre-strain level on mechanical properties of the solid-phase formed thermoplastic composite. A uniaxial solid-phase forming was performed at the temperature of 125$\^{C}$ and at the constant cross-head speed of 3mm/sec. The composite sheet was formed to various pre-strain levels of 10%, 20%, and 30%. Tension, flexural, and impact tests were carried out to characterize the material properties of a solid-phase formed part. Tensile and flexural strengths decreased with increasing the pre-strain level, while impact strength increased. Various microstructures of the formed part explained the above material behavior.

Distribution of the Concentration of Fuel Vapor in DI Gasoline Sprays Under Evaporation Condition (증발 조건에서 직분식 가솔린 분무의 증기 농도의 분포)

  • Hwang, S.C.;Choi, D.S.;Cha, K.J.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • The concentration and spatial distribution of vapor phases in DI (Direct Injection) gasoline spray were measured quantitatively by exciplex fluorescence method. Fluorobenzene and DEMA (diethylmethylamine) in a solution of hexane were used as the exciplex-forming dopants. The fluorescence intensity of vapor phase were obtained by ICCD camera with the appropriate filter The relationship between fluorescence intensity and vapor concentration was induced fer the purpose of a quantitative analysis. The 2-D vapor/liquid images of fuel spray were captured under the evaporation condition, and the spatial distribution of vapor concentration was obtained. The spatial distribution of liquid phase had hollow-cone shape. And the vapor phase was widely distributed in the whole spray. The behavior of vapor phase was significantly affected by second flow such as entrainment, vortex, while that of liquid phase was scarcely affected.

  • PDF

Joint Estimation of Near-Field Source Parameters and Array Response

  • Cui, Han;Peng, Wenjuan
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.83-94
    • /
    • 2017
  • Near-field source localization algorithms are very sensitive to sensor gain/phase response errors, and so it is important to calibrate the errors. We took into consideration the uniform linear array and are proposing a blind calibration algorithm that can estimate the directions-of-arrival and range parameters of incident signals and sensor gain/phase responses jointly, without the need for any reference source. They are estimated separately by using an iterative approach, but without the need for good initial guesses. The ambiguities in the estimations of 2-D electric angles and sensor gain/phase responses are also analyzed in this paper. We show that the ambiguities can be remedied by assuming that two sensor phase responses of the array have been previously calibrated. The behavior of the proposed method is illustrated through simulation experiments. The simulation results show that the convergent rate is fast and that the convergent precision is high.

Separation of D and L Amino Acids by High-Performance Liquid Chromatography

  • Lee, Sun-Haing;Ryu, Jae-Wook;Park ,Kyoung-Sug
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 1986
  • Separation of optical isomers of some derivatives of amino acids by reversed-phase HPLC has been accomplished by adding a chelate of an optically active amino acid to copper(Ⅱ) to the mobile phase. Cu(Ⅱ) complexes of L-proline and L-hydroxyproline in the mobile phase showed different degrees of separation. Optical isomers of DNS derivatives of amino acids are selectively separated, but those of several other derivatives are not at all. The kinds of buffer agents, the pH, and the concentrations of acetonitrile and the Cu(Ⅱ) ligand all affect the separations. The elution behavior between D and L DNS-amino acids appears to depend on the alkyl side chain of the amino acids. A chromatographic mechanism is proposed that is based on a stereospecificity of the formation of ternary complexes by the D, L-DNS-amino acids and the chiral additive associated with the stationary phase. The steric effects of the ligand exchange reactions are related with the feasibility of cis and/or trans attack of the amino acids to the binary chiral chelate retained on the stationary phase.

Optical Phase Properties of Small Numbers of Nanoslits and an Application for Higher-efficiency Fresnel Zone Plates

  • Kim, Hyuntai;Lee, Seung-Yeol
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.285-291
    • /
    • 2019
  • We have studied the behavior of light in the intermediate regime between a single nanoslit and an infinite nanoslit array. We first calculated the optical characteristics of a small number of nanoslits using finite element numerical analysis. The phase variance of the proposed nanoslit model shows a gradual phase shift between a single nanoslit and ideal nanoslit array, which stabilizes before the total array length becomes ${\sim}0.5{\lambda}$. Next, we designed a transmission-enhanced Fresnel zone plate by applying the phase characteristics from the small-number nanoslit model. The virtual-point-source method suggests that the proposed Fresnel zone plate with phase-invariant nanoslits achieves 2.34x higher transmission efficiency than a conventional Fresnel zone plate. Our report describes the intermediate behaviors of a nanoslit array, which could also benefit subwavelength metallic structure research of metasurfaces.