Browse > Article

Competition between Phase Separation and Crystallization in a PCL/PEG Polymer Blend Captured by Synchronized SAXS, WAXS, and DSC  

Chuang Wei-Tsung (National Synchrotron Radiation Research Center)
Jeng U-Ser (National Synchrotron Radiation Research Center)
Sheu Hwo-Shuenn (National Synchrotron Radiation Research Center)
Hong Po-Da (Department of Polymer Engineering, National Taiwan University of Science and Technology)
Publication Information
Macromolecular Research / v.14, no.1, 2006 , pp. 45-51 More about this Journal
Abstract
We conducted simultaneous, small-angle, X-ray scattering/differential scanning calorimetry (SAXS/DSC) and simultaneous, wide-angle, X-ray scattering (WAXS)/DSC measurements for a polymer blend of poly($\varepsilon$-caprolactone)/poly(ethylene glycol)(PCL/PEG). The time-dependent SAXS/DSC and WAXS/DSC results, measured while the system was quenched below the melting temperature of PCL from a melting state, revealed the competitive behavior between liquid-liquid phase separation and crystallization in the polymer blend. The time-dependent structural evolution extracted from the SAXS/WAXS/DSC results can be characterized by the following four stages in the PCL crystallization process: the induction (I), nucleation (II), growth (III), and late (IV) stages. The influence of the liquid-liquid phase separation on the crystallization of PCL was also observed by phase-contrast microscope and polarized microscope with 1/4$\lambda$ compensator.
Keywords
phase separation; crystallization; polymer blend; poly(ethylene glycol);
Citations & Related Records

Times Cited By Web Of Science : 13  (Related Records In Web of Science)
Times Cited By SCOPUS : 11
연도 인용수 순위
1 K. N. Kruger and H. G. Zachmann, Macromolecules, 26, 5202 (1993)   DOI   ScienceOn
2 G. K. Bryant, H. F. Gleeson, A. J. Ryan, J. P. A. Fairclough, D. Bogg, J. G. P. Goossens, and W. Bras, Rev. Sci. Instrum., 69, 2114 (1998)   DOI
3 H. Tanaka and T. Nishi, Phys. Rev. Lett., 55, 1102 (1985)   DOI   ScienceOn
4 H. Wang, K. Shimizu, H. Kim, E. K. Hobbie, Z. Wang, and C. C. Han, J. Chem. Phys., 116, 7311 (2002)   DOI   ScienceOn
5 W. T. Chuang, K. S. Shih, and P. D. Hong, J. Polym. Res., 12, 197 (2005)   DOI   ScienceOn
6 W. J. Ruland, J. Appl. Crystallogr., 4, 70 (1971)   DOI
7 P. Deby, H. R. Anderson, and H. Brumberger, J. Appl. Phys., 28, 679 (1957)   DOI
8 T. P. Russell, H. Ito, and G. D. Wignall, Macromolecules, 21, 1703 (1988)   DOI   ScienceOn
9 S. Nojima, K. Satoh, and T. Ashida, Macromolecules, 24, 942 (1991)   DOI
10 H. Hu and D. L. Dorset, Macromolecules, 23, 4604 (1990)   DOI
11 B. S. Hsiao, G. Kenn, Corwin H, D. Q. Wu, and B. Chu, Polymer, 34, 3986 (1993)   DOI   ScienceOn
12 R. Verma, H. Maeand, and B. S. Hsiao, Macromolecules, 29, 7767 (1996)   DOI   ScienceOn
13 C. Wutz, M. Bark, J. Cronauer, R. Dohrmann, and H. G. Zachmann, Rev. Sci. Instrum., 66, 1303 (1995)   DOI   ScienceOn
14 K. Tashiro, S. Kariyo, A. Nishimori, T. Fujii, S. Saragai, S. Nakamoto, T. Kawaguchi, A. Matsumoto, and O. Rangsiman, J. Polym. Sci.; Part B: Polym. Phys., 40, 495 (2002)   DOI   ScienceOn
15 P. Debye and A. M. Bueche, J. Appl. Phys., 20, 518 (1949)   DOI
16 H. Hama and K. Tashiro, Polymer, 44, 2159 (2003)   DOI   ScienceOn
17 D. Lexa, Rev. Sci. Instrum., 70, 2242 (1999)   DOI   ScienceOn
18 W. Bras, G. E. Derbyshire, A. Devine, S. M. Clark, J. Cooker, B. E. Komanschek, and A. J. Ryan, J. Appl. Cryst., 28, 26 (1995)   DOI   ScienceOn
19 Lopez-Cabarcos, B. S. Hsiao, and F. J. Balta-Calleja, Phys. Rev. E, 54, 989 (1996)   DOI
20 N. J. Terrill, P. A. Fairclough, E. Towns-Ansrews, B. U. Komanschek, R. J. Young, and A. J. Ryan, Polymer, 39, 2381 (1998)   DOI   ScienceOn
21 N. Inaba, K. Sato, S. Suzuki, and T. Hashimoto, Macromolecules, 19, 1690 (1986). N. Inaba, T. Yamada, S. Suzuki, and T. Hashimoto, Macromolecules, 21, 407 (1988)   DOI   ScienceOn
22 T. P. Russel and J. T. Koberstein, J. Polym. Sci., 23, 1109 (1985)
23 S. Okamoto, K. Yamamoto, K. nomura, S. Hara, I. Akiba, K. Sakurai, A. Koyama, M. Nomura, and S. Sakurai, J. Macromol. Sci. Phys., 43, 279 (2004)   DOI
24 P. D. Olmsted, W. C. K. Poon, T. C. B. McLeish, N. J. Terrill, and A. J. Ryan, Phys. Rev. Lett., 81, 373 (1998)   DOI   ScienceOn
25 I. Sics, A. Nogales, T. A. Ezquerra, Z. Denchev, and F. J. Balta-Calleja, Rev. Sci. Instrum., 71, 1733 (2000)   DOI   ScienceOn
26 J. K. Kim and B. K. Kim, J. Polym. Sci.; Part B: Polym. Phys., 37, 1991 (1999). J. K. Kim, B. K. Kim, and M. Park, J. Polym. Sci.; Part B: Polym. Phys., 38, 707 (2000)   DOI   ScienceOn
27 R. S. Stein, F. B. Khambatta, F. P. Warner, T. P. Russell, A. Escala, and E. Balizer, J. Polym. Sci., Polym. Symp., 3, 313 (1978)
28 Y. H. Lai, Y. S. Sun, U. Jeng, Y. F. Song, K. L. Tsang, and K. S. Liang, Nucl. Inst. Meth. Phys. Res. B, 238, 205 (2005)   DOI   ScienceOn
29 S. Naylor, W. Bras, G. Derbyshire, G. R. Mant, D. Bogg, and A. J. Ryan, Nucl. Instrum. Methods., B97, 253 (1995)   DOI
30 A. Keller and S. Z. D. Cheng, Polymer, 39, 4461 (1998)   DOI   ScienceOn
31 M. Imai, K. Kaji, and T. Kanaya, Phys. Rev. Lett., 71, 4162 (1993)   DOI   ScienceOn
32 G. R. Strobl and M. Schneider, J. Polym. Sci.; Part B: Polym. Phys., 18, 1343 (1980)   DOI
33 G. Elsner, H. G. Zachmann, and J. R. Milch, Makromol. Chem., 182, 657 (1981)   DOI
34 Z. G. Wang, B. S. Hsiao, E. B. Sirota, P. Agarwal, and S. Srinivas, Macromolecules, 33, 978 (2000)   DOI   ScienceOn