• 제목/요약/키워드: phase II enzyme

검색결과 102건 처리시간 0.024초

Chemopreventive effects of polysaccharides extract from Asterina pectinifera on HT-29 human colon adenocarcinoma cells

  • Nam, Kyung-Soo;Shon, Yun-Hee
    • BMB Reports
    • /
    • 제42권5호
    • /
    • pp.277-280
    • /
    • 2009
  • We examined the effects of polysaccharides extracted from Asterina pectinifera on the activities of quinone reductase (QR), glutathione S-transferase (GST), ornithine decarboxylase (ODC), cyclooxygenase (COX)-2 and glutathione (GSH) levels in HT-29 human colon adenocarcinoma cells. We found that the polysaccharides extract induced QR activity in a dose-dependent manner over a concentration range of $20-60\;{\mu}g/ml$ and increased GST activity as much as 1.4-fold over controls. GSH levels were increased 1.3- and 1.5-fold with the extract at 40 and $60\;{\mu}g/ml$, respectively. The activity and protein expression of ODC in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced colon cancer cells was inhibited by the extract. The polysaccharides suppressed TPA-induced prostaglandin (PG) production. These data indicate that polysaccharides from A. pectinifera increase phase II detoxification enzyme activity and inhibit ODC and COX-2 activities in HT-29 human colon adenocarcinoma cells. Consequently, this effect may contribute to the protective effect of polysaccharides from A. pectinifera against colon cancer.

Protopanaxatriol Ginsenoside Rh1 Upregulates Phase II Antioxidant Enzyme Gene Expression in Rat Primary Astrocytes: Involvement of MAP Kinases and Nrf2/ARE Signaling

  • Jung, Ji-Sun;Lee, Sang-Yoon;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제24권1호
    • /
    • pp.33-39
    • /
    • 2016
  • Oxidative stress activates several intracellular signaling cascades that may have deleterious effects on neuronal cell survival. Thus, controlling oxidative stress has been suggested as an important strategy for prevention and/or treatment of neurodegenerative diseases. In this study, we found that ginsenoside Rh1 inhibited hydrogen peroxide-induced reactive oxygen species generation and subsequent cell death in rat primary astrocytes. Rh1 increased the expression of phase II antioxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1, superoxide dismutase-2, and catalase, that are under the control of Nrf2/ARE signaling pathways. Further mechanistic studies showed that Rh1 increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to the antioxidant response element (ARE), and increased the ARE-mediated transcription activities in rat primary astrocytes. Analysis of signaling pathways revealed that MAP kinases are important in HO-1 expression, and act by modulating ARE-mediated transcriptional activity. Therefore, the upregulation of antioxidant enzymes by Rh1 may provide preventive therapeutic potential for various neurodegenerative diseases that are associated with oxidative stress.

Schisandra Chinensis Baillon regulates the gene expression of phase II antioxidant/detoxifying enzymes in hepatic damage induced rats

  • Jang, Han I;Do, Gyeong-Min;Lee, Hye Min;Ok, Hyang Mok;Shin, Jae-Ho;Kwon, Oran
    • Nutrition Research and Practice
    • /
    • 제8권3호
    • /
    • pp.272-277
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: This study investigated the antioxidant activities and hepatoprotective effects of Schisandra chinensis Baillon extract (SCE) against tert-butyl hydroperoxide (t-BHP)-induced oxidative hepatic damage in rats. MATERIALS/METHODS: Sprague-Dawley (SD) rats were pretreated with SCE (300, 600, and 1,200 mg/kg BW) or saline once daily for 14 consecutive days. On day 14, each animal, except those belonging to the normal control group, were injected with t-BHP (0.8 mmol/kg BW/i.p.), and all of the rats were sacrificed 16 h after t-BHP injection. RESULTS: Although no significant differences in AST and ALT levels were observed among the TC and SCE groups, the high-dose SCE group showed a decreasing tendency compared to the TC group. However, erythrocyte SOD activity showed a significant increase in the low-dose SCE group compared with the TC group. On the other hand, no significant differences in hepatic total glutathione (GSH) level, glutathione reductase (GR), and glutathione peroxidase (GSH-Px) activities were observed among the TC and SCE groups. Hepatic histopathological evaluation revealed that pretreatment with SCE resulted in reduced t-BHP-induced incidence of lesions, such as neutrophil infiltration, swelling of liver cells, and necrosis. In particular, treatment with a high dose of SCE resulted in induction of phase II antioxidant/detoxifying enzyme expression, such as glutathione S-transferase (GST) and glutamate-cysteine ligase catalytic subunit (GCLC). CONCLUSIONS: Based on these results, we conclude that SCE exerts protective effects against t-BHP induced oxidative hepatic damage through the reduction of neutrophil infiltration, swelling of liver cells, and necrosis. In addition, SCE regulates the gene expression of phase II antioxidant/detoxifying enzymes independent of hepatic antioxidant enzyme activity.

김으로부터 분리한 Angiotensin-I Converting Enzyme 저해제의 정제 및 특성 (Purification and Characterization of Angiotensin I-Converting Enzyme Inhibitor from Porphyra yezoensis)

  • 최수진;전우진;유광원;신동훈;홍범식;조홍연;양한철
    • 한국식품영양과학회지
    • /
    • 제29권4호
    • /
    • pp.719-725
    • /
    • 2000
  • 본 연구는 70여종의 국내산 해조류중 가장 높은 ACE 저해 활성을 보였던 김(Porphyra yezoensis, 서천)의 산가수분해물로부터 ACE 활성 저해 펩타이 드를 분리하여 그 특성을 조사하였다. ACE 저해물질의 분획은 균일하게 파쇄한 김을 2.5 N HCl로 산 가수분해한 후 중화하여 한외여과로 분자크기 3 kDa 이하의 물질로 분리하였다. 분자크기 3 kDa이하의 물질에 대하여 column chromatography(Amberlite XAD 8, DEAE-Toyopearl, Sephadex LH-20)와 reverse phase HPLC(C18)를 순차적으로 수행하여 ACE 저해제인 PY3--II-b-h5물질을 분리하였다. PY30-II-b-h5는 분자크기는 약 580 dalton으로 glycine(24.5%), arginine(56.8%), proline(18.8%)의 아미노산 조성을 갖는 저분자 펩타이드였으며, ACE의 저해양상은 경쟁적 저해작용을 하였고, IC50 값은 10.6$\mu\textrm{g}$/mL 이었다.

  • PDF

원유의 노출이 담치와 조피볼락의 phase II 약물대사효소 UDP-glucoronosyl transferase 및 glutathione S-transferase의 활성에 미치는 영향 (Activity Changes in Phase II Drug-metabolizing Enzymes UDP-Glucoronosyl Transferase and Glutathione S-Ttansferase to Crude Oil Exposure in Mussel and Rockfish)

  • 박관하;김주완;박음미;임철원;최민순;최선남;황인영;김정상
    • Environmental Analysis Health and Toxicology
    • /
    • 제21권2호
    • /
    • pp.103-113
    • /
    • 2006
  • This study examined effects of crude oil on the phase II drug-metabolizing enzymes UDP-glucuronosyl transferase (UDPGT) and glutathione S-transferase (GST) in mussel Mytilus edulis and rockfish Sebastes schlegeli, a representative bivalve and a culture fish, respectively. This work also intended indirectly to evaluate the post impact recovery from the massive oil tanker spillage accidents occurred during the summer of 1995 in the sea area off Yosu City, Chonnam. For these, enzyme activities of UDPGT and GST were examined in the fish and mussel following laboratory exposure to fresh crude oil, weathered oil, field-obtained oil residues, or in the field biota samples. Decreased GST activity was observed in rock fish following exposure to oil-soluble fraction (OSF) of fresh oil. A similar diminished GST activity was also observed after OSF of artificially weathered oil. OSF of field oil residues retrieved from the spillage area approximately 1 year later also exerted a slight inhibition of GST to rockfish. There was neither a change in UDPGT in rockfish, nor were there changes in mussel in both enzymes to any oil fractions. We could not observe any difference in the two enzymes either in rockfish or mussel sampled from the field during $1.5{\sim}2.0$ years post spillage, indicating that their enzyme systems might had been recovered by the sampling time. In conclusion, it seems that the inhibition of GST activity in rockfish is a biomarker response to crude oil exposure. The results, however, must be interpreted with care, as the inhibition nay reflect various factors such as oil concentration, duration and water temperature.

한국인 두경부암종 환자에서 Cytochrome P450 1A1, 2E1 및 N-acetyltransferase 2 효소의 다형성 분석에 따른 유전적 감수성에 대한 연구 (GENETIC SUSCEPTIBILITIES OF CYTOCHROME P450 1A1, 2E1, AND N-ACETYLTRANSFERASE 2 TO THE RISKS FOR KOREAN HEAD AND NECK CANCER PATIENTS)

  • 이영수;김태균;우순섭;심광섭;공구
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제22권4호
    • /
    • pp.373-382
    • /
    • 2000
  • Individual genetic susceptibilities to cancers may result from several factors including differences in xenobiotics metabolism to chemical carcinogens, DNA repair, altered oncogenes and suppressor genes, and environmental carcinogen exposures. Among them, genetic polymorphisms of metabolizing enzymes to chemical carcinogens have been recognized as a major important host factors in human cancers. They have two main types of enzymes: the phase I cytochrome P-450 mediating enzymes (CYPs) and phase II conjugating enzymes. The purpose of this study is to determine the frequencies of genotypes of phase I (CYP1A1 and CYP2E1) and phase II (NAT2) metabolizing enzymes in healthy control and head and neck cancer patients of Korean and to identify the relative high risk genotypes of these metabolizing enzymes to head and neck cancer in Korean. The author has analyzed 132 head and neck cancer patients and 113 healthy controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results were as following; 1. The frequencies of genotypes of CYP1A1, CYP2E1 and NAT2 in healthy control were as following; CYP1A1 exon 7 polymorphism; Ile/Ile: Ile/Val: Val/Val = 59.3%: 36.3%: 4.4% CYP2E1 Pst I polymorphism, C1/C1: C1/C2: C2/C2 = 61.1%: 32.1%: 6.2% NAT2 polymorphism; F/F: F/S: S/S = 43.4%: 48.7%: 8.0% 2. In analysis of phase I enzyme, Val/Val genotype in CYP1A1 exon 7 polymorphism and C2/C2 genotype in CYP2E1 Pst I polymorphism were associated with relative high risks to head and neck cancers (Odds' ratio: 2.09 and 1.37, respectively). 3. Among the genotypes of NAT2 enzyme polymorphism, S/S genotype of NAT2 enzyme had 1.03 times of relative risk to head and neck cancers. 4. In combined genotyping of CYP1A1, CYP2E1, and NAT2 enzymes polymorphisms, the patients with Val/Val and C1/C1, C2/C2 and fast acetylator, and Val/Val and fast acetylator had higher relative risks than the patients with each baseline of combined genotypes (Odds' ratio: 2.82, 1.98 and 2.1, respectively). These results suggest the combined genotypes of Val/Val and C1/C1, C2/C2 and fast acetylator, and Val/Val and fast acetylator were more susceptible to head and neck cancers in Korean. And genotyping of metabolizing enzymes could be useful for predicting individual susceptibility to head and neck cancer.

  • PDF

한약재의 대사 및 독성의 기전과 예방 (Mechanisms and Prevention for Metabolism and Toxicity of Korean Herbal-Medicine)

  • 박영철;김종봉;이선동
    • 대한예방한의학회지
    • /
    • 제12권1호
    • /
    • pp.73-87
    • /
    • 2008
  • In recent years, there has been a globally increasing application of herbal medicines and dietary supplements to treat various chronic diseases and to promote health. However, there are increasing clinical reports on the organ toxicities associated with consumption of herbal medicines. In general, most xenobiotics are metabolized by Phase I reaction(the main enzyme : cytochrome P450) and Phase II reaction. However, reactive oxygen species, free radicals and electrophils are produced inevitably during xenobiotics metabolism. These toxic species and metabolites are increased whenever the endogenous substances and enzymes for Phase II reaction not available. In addition, herbal-drug interactions are pharmacokinetic, with most actually or theoretically affecting the metabolism of the affected product by way of the cytochrome P450 enzymes. This review updated the knowledge on metabolic activation of herbal components and its clinical and toxicological implications. Also, the possible way for preventing the side-effects by herbal-medicine use was suggested.

  • PDF

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • 제28권3호
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.

Progesterone의 단크론성 항체에 관한 특성 및 활용에 관한 연구 II. ELISA 기법의 개발 (Characteristics and application of monoclonal antibody to progesterone II. Development of progesterone enzyme-linked immunosorbent assay(ELISA))

  • 강정부;김종수
    • 대한수의학회지
    • /
    • 제31권4호
    • /
    • pp.403-409
    • /
    • 1991
  • Progesterone의 단크론성 항체를 생산, 이용하여 감도가 높으면서도 신속히 측정할 수 있는 ELISA 기법을 처음으로 개발코져 실시하였다. 단크론성 항체는 종래의 면역방법에 의해 획득한 항혈청에 비해 약 10배의 결합율을 보였고 titer 역시 높았다. Dot-blot 분석 결과 단크론성 항체는 IgM이었다. 경합반응은 2시간으로 충분하였고, progesterone 표준용액을 이용한 표준 곡선은 0~1000pg/well에서 거의 직선적이었다. Progesterone의 단크론성 항체를 이용한 ELISA는 임상적으로는 물론 연구용으로도 신속한 항체의 기능 측정에는 물론 각종 번식 관련의 지표로 충분히 활용될 수 있을 것으로 판단된다.

  • PDF

오염수 내의 유기인 화합물의 측정을 위한 광섬유 바이오센서 (제 2 부 : 신호분석 및 수치모사) (Fiber-optic biosensor for the detection of organophosphorus compounds in a contaminated water (Part II : The signal analysis and simulation))

  • 최정우;민준홍;이원홍
    • 센서학회지
    • /
    • 제3권2호
    • /
    • pp.16-23
    • /
    • 1994
  • 오염수에서 유기인 화합물을 측정하기 위해 개발된 광섬유 바이오센서의 신호의 분석과 최적설계를 위하여 센서에 사용되어진 AChE효소(acetylcholinesterase)의 반응, 반응기 내의 유체거동 및 물질전달현상의 해석이 필요하다. 사용되어진 센서의 반응기 부분을 해석하고 재설계하기 위하여 효소 반응을 연구하고, 이동현상학적으로 유체 및 물질확산 현상을 해석하여 반응기 모델을 성립하였다. 사용되어진 유기인 화합물에 의해 저해되는 AChE효소의 측정범위인 0-2 ppm 사이에서 저해반응을 실험하였으며, 비가역 저해 효소 반응식을 제안하였다. 반응기를 두상 즉 벌크상과 효소층으로 나누어 유체거동을 해석하였으며, 고정화겔 내의 확산의 영향을 조사하였다. 반응식, 유체거동식 및 확산식을 연계하여 세워진 반응기 전체모델을 제시하였고, 이를 이용하여 신호를 해석하였다. 제시된 모델을 이용하여 효소량, 효소층의 두께의 증가에 따른 센서 신호량의 민감도를 전산모사하였다.

  • PDF