• Title/Summary/Keyword: phagocytic signaling

Search Result 34, Processing Time 0.034 seconds

Evaluation of Immune Enhancing Activity of Luthione, a Reduced Glutathione, in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 환원형 glutathione인 luthione의 면역 증강 활성 평가)

  • Seon Yeong Ji;Da Hye Kwon;Hye Jin Hwang;Yung Hyun Choi
    • Journal of Life Science
    • /
    • v.33 no.5
    • /
    • pp.397-405
    • /
    • 2023
  • Although glutathione (GSH) has been shown to play an important role in the prevention of oxidative damage as an antioxidant, studies on immune regulation by it have not been properly conducted. In this study, we investigated whether luthione®, a reduced GSH, has an immune enhancing effect in murine macrophage RAW 264.7 cells. The results of flow cytometry and immunofluorescence experiments indicated that luthione increased phagocytic activity, a representative function of macrophages, compared to the control cells. According to the results of the cytokine array, the expression of interleukin (IL)-5, IL-1β, and IL-27 was significantly increased in the luthione-treated cells. Luthione also enhanced the production of tumor necrosis factor-α and IL-1β through increased expression of their proteins, and increased release of the immune mediators such as nitric oxide (NO) and prostaglandin E2 was associated with increased expression of inducible NO synthase and cyclooxygenase-2. In addition, the expression of cluster of differentiation 86, an M1 macrophage marker, was dramatically enhanced in RAW 264.7 cells treated with luthione. Furthermore, as a result of heat map analysis, we found that cytokine signaling 1/3-mediated signal transducer and activator of transcription/Janus tyrosine kinase signaling pathway was involved in the immunomodulatory effect by luthione. In conclusion, our data suggested that luthione could act as a molecular regulator in M1 macrophage polarization and enhance immune capacity by promoting macrophage phagocytic function.

Effect of Fruits from Pyrus ussuriensis var. hakunensis (Nakai) T.B. Lee on Macrophage Activation (산돌배(Pyrus ussuriensis var. hakunensis (Nakai) T.B. Lee) 열매의 대식세포 활성화 유도 활성)

  • Geum, Na Gyeong;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.377-383
    • /
    • 2021
  • In this study, we investigated in vitro immunostimulatory activity of fruit extracts from Pyrus ussuriensis var. hakunensis (Nakai) T.B. Lee (PUF) using mouse macrophage RAW264.7 cells. PUF increased the production of immunostimulatory factors such as NO, iNOS, IL-1β, IL-6 and TNF-α, and phagocytic activity in RAW264.7 cells. The inhibition of TLR2 and TLR4 blocked PUF-mediated production of immunostimulatory factors in RAW264.7 cells. In addition, the inhibition of MAPKs signaling pathway reduced PUF-mediated production of immunostimulatory factors. From these results, PUF may have immunostimulatory activity via TLR2/4-mediated activation of MAPKs signaling pathway. Therefore, PUF expected to be used as a potential immune-enhancing agent.

IL-33 Priming Enhances Peritoneal Macrophage Activity in Response to Candida albicans

  • Tran, Vuvi G.;Cho, Hong R.;Kwon, Byungsuk
    • IMMUNE NETWORK
    • /
    • v.14 no.4
    • /
    • pp.201-206
    • /
    • 2014
  • IL-33 is a member of the IL-1 cytokine family and plays a role in the host defense against bacteria, viruses, and fungi. In this study, we investigated the function of IL-33 and its receptor in in vitro macrophage responses to Candida albicans. Our results demonstrate that pre-sensitization of isolated peritoneal macrophages with IL-33 enhanced their pro-inflammatory cytokine production and phagocytic activity in response to C. albicans. These macrophage activities were entirely dependent on the ST2-MyD88 signaling pathway. In addition, pre-sensitization with IL-33 also increased ROS production and the subsequent killing ability of macrophages following C. albicans challenge. These results indicate that IL-33 may increase anti-fungal activity against Candida through macrophage-mediated resistance mechanisms.

Molecular Mechanism of Macrophage Activation by Exopolysaccharides from Liquid Culture of Lentinus edodes

  • Lee, Ji-Yeon;Kim, Joo-Young;Lee, Yong-Gyu;Rhee, Man-Hee;Hong, Eock-Ki;Cho, Jae-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.355-364
    • /
    • 2008
  • Mushrooms are regarded as one of the well-known foods and biopharmaceutical materials with a great deal of interest. ${\beta}$-Glucan is the major component of mushrooms that displays various biological activities such as antidiabetic, anticancer, and antihyperlipidemic effects. In this study, we explored the molecular mechanism of its immunostimulatory potency in immune responses of macrophages, using exopolysaccharides prepared from liquid culture of Lentinus edodes. We found that fraction II (F-II), with large molecular weight protein polysaccharides, is able to strongly upregulate the phenotypic functions of macrophages such as phagocytic uptake, ROS/NO production, cytokine expression, and morphological changes. F-II triggered the nuclear translocation of NF-${\kappa}B$ and activated its upstream signaling cascades such as PI3K/Akt and MAPK pathways, as assessed by their phosphorylation levels. The function-blocking antibodies to dectin-1 and TLR-2, but not CR3, markedly suppressed F-II-mediated NO production. Therefore, our data suggest that mushroom-derived ${\beta}$-glucan may exert its immunostimulating potency via activation of multiple signaling pathways.

Effect of Hot Water Extract from Scutellaria barbata on the Macrophages Activated by Lipopolysaccharide (반지련 (Scutellaria barbata D. Don) 추출물이 lipopolysaccharide에 의해 활성화된 대식세포에 미치는 영향)

  • Shen, Ting;Lee, Yong-Jin;Cho, Jae-Youl
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.5
    • /
    • pp.313-319
    • /
    • 2008
  • Scutellaria barbata was examined to evaluate its modulatory effects on the functional activation of macrophages under lipopolysaccharide (LPS) treatment. To do this, hot water extract (Sb-HWE) was prepared from Scutellaria barbata and several inflammatory parameters such as nitric oxide (NO) production, phagocytosis, reactive oxygen species (ROS) determination and intracellular signaling pathway were selected to be tested. Sb-HWE strongly blocked NO production in LPS-activated RAW264.7 cells in a dose-dependent manner. However, it did not suppress inducible NO synthase (iNOS). In agreement, Sb-HWE did not diminish inflammatory signaling composed of NF-${\kappa}B$ and its upstream activation signaling enzymes such as Akt and $I{\kappa}B{\alpha}$. Sb-HWE protected RAW264.7 cells from LPS-induced cytotoxicity up to 80% at 400\;{\mu}g/ml$. Furthermore, this extract blocked phagocytic uptake of FITC-dextran, while sodium nitroprusside (SNP)-induced ROS generation in RAW264.7 cells was not decreased. Therefore, our data suggest that Sb-HWE may have differential immunoregulatory function depending on macrophage-mediated immune responses.

Modulatory Effect of Kaempferitrin, a 3,7-Diglycosylflavone, on the LPS-Mediated Up-regulation of Surface Co-stimulatory Molecules and CD29-Mediated Cell-cell Adhesion in Monocytic- and Macrophage-like Cells (활성화된 단핵구 및 대식세포의 항원제시기능에 대한 Kaempferitrin의 조절 효과)

  • Kim, Byung-Hun;Cho, Dong-Ha;Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.51 no.6
    • /
    • pp.482-489
    • /
    • 2007
  • Kaempferitrin, isolated from Kenaf (Hibiscus cannabinus), was examined to evaluate its modulatory effects on antigen-presenting cell functions of macrophages/monocytes such as phagocytosis of foreign materials, up-regulation of costimulatory molecules (CD40, CD80 and CD86), adhesion molecule activation, and antigen processing and presentation. Kaempferitrin strongly blocked up-regulation of CD40, CD80 and CD86, but not pattern recognition receptor (PRR) (e.g., TLR2). It also suppressed functional activation of CD29 (${\beta}1$-integrins), as assessed by cell-cell adhesion assay, required for T cell-antigen-presenting cell (APC) interaction. Furthermore, this compound did not block a simple activation of CD29, as assessed by cell-fibronectin adhesion assay. However, the compound did not diminish phagocytic uptake, an initial step for antigen processing, and ROS generation in RAW264.7 cells. In particular, to understand molecular mechanism of kaempferitrin-mediated inhibition, the regulatory role of LPS-induced signaling events was examined using immunoblotting analysis. Interestingly, this compound dose dependently suppressed the phosphorylation of $I{\kappa}B{\alpha}$, Src, Akt and Syk, demonstrating that it can negatively modulate the activation of these signaling enzymes. Therefore, our data suggested that kaempferitrin may be involved in regulating APC function-relevant immune responses of macrophages and monocytes by regulating intracellular signaling.

In vitro Immunostimulatory Activity of Bok Choy (Brassica campestris var. chinensis) Sprouts in RAW264.7 Macrophage Cells

  • Geum, Na Gyeong;Yeo, Joo Ho;Yu, Ju Hyeong;Choi, Min Yeong;Lee, Jae Won;Baek, Jueng Kyu;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.3
    • /
    • pp.203-215
    • /
    • 2021
  • Bok choy is one of Brassica vegetables widely consumed worldwide. Brassica vegetables have been reported to exert various pharmacological activities such as antioxidant, anti-cancer and cardioprotective activity. However, studies on immunostimulatory activity of bok choy sprout have not been conducted properly. Thus, in this study, we investigated in vitro immunostimulatory activity of bok choy sprout extract (BCS) using mouse macrophage RAW264.7 cells. Our results showed that BCS increased the production of immunomodulators such as NO, iNOS, IL-1β, IL-6, IL-12, TNF-α and MCP-1, and phagocytic activity in RAW264.7 cells. BCS activated MAPK, NF-κB and PI3K/AKT signaling pathways. However, BCS-mediated production of immunomodulators was dependent on JNK, NF-κB and PI3K/AKT signaling pathways. the mRNA expression of TLR2 were significantly increased by BCS, TLR2 inhibition by anti-TLR2 dramatically suppressed the production of immunomodulators by BCS. In addition, TLR2 inhibition by anti-TLR2 significantly reduced BCS-mediated phosphorylation level of AKT, JNK and NF-κB. From these results, BCS may have immunostimulatory activity via TLR2-MAPK, NF-κB and PI3K/AKT signaling pathways. Therefore, BCS expected to be used as a potential immune-enhancing agent.

Induction of Autophagy by Rosa acicularis Leaves Extracts in RAW264.7 Cells (인가목(Rosa acicularis Lindl.) 잎 추출물의 대식세포에서 자가포식 유도활성)

  • Jeong Won Choi;Jin Boo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.36 no.4
    • /
    • pp.257-263
    • /
    • 2023
  • Autophagy contributes to enhancing the immune system (innate and adaptive immune system) against foreign pathogens. Autophagy of macrophages is used as a major indicator for developing vaccine adjuvants to increase the adaptive immune response. In this study, water extracts from Rosa acicularis leaves (RAL) increased the production of immunostimulatory mediators and phagocytic activity in RAW264.7 cells. RAL increased p62/SQSTM1 expression. Inhibition of TLR4, JNK, and PI3K/AKT blocked RAL-mediated increase of p62/SQSTM1. RAL activated JNK and PI3K/AKT signaling. RAL-mediated activations of JNK and PI3K/AKT signaling were reversed by TLR4 inhibition. Taken together, it is believed that RAL-mediated autophagy may be dependent on activating via TLR4-dependent activation of JNK and PI3K/AKT signaling in macrophages.

The Effect of Caffeic Acid Phenethyl Ester (CAPE) on Phagocytic activity of septic Neutrophil in vitro

  • Eun-A Jang;Hui-Jing Han;Tran Duc Tin;Eunye Cho;Seongheon Lee;Sang Hyun Kwak
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.211-219
    • /
    • 2023
  • Caffeic acid phenethyl ester (CAPE) is an active component of propolis obtained from honeybee hives. CAPE possesses anti-mitogenic, anti-carcinogenic, anti-inflammatory, and immunomodulatory activities in diverse systems, which know as displays antioxidant activity and inhibits lipoxygenase activities, protein tyrosine kinase, and nuclear factor kappa B (NF-κB) activation. This study aimed to investigate the effect of CAPE on lipopolysaccharide (LPS)-induced human neutrophil phagocytosis. Human neutrophils were cultured with various concentrations of CAPE (1, 10, and 100 µM) with or without LPS. The pro-inflammatory proteins (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-6 and IL-8) levels were measured after 4 h incubation. To investigate the intracellular signaling pathway, we measured the levels of mitogen-activated protein kinases (MAPK), including phosphorylation of p38, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Next, to evaluate the potential phagocytosis, neutrophils were labeled with iron particles of superparamagnetic iron oxide nanoparticles (SPIONs, 40 nm) for 1 h in culture medium containing 5 mg/mL of iron. The labeling efficiency was determined by Prussian blue staining for intracellular iron and 3T-wighted magnetic resonance imaging. CAPE decreased the activation of intracellular signaling pathways, including ERK1/2 and c-Jun, and expression of pro-inflammatory cytokines, including TNF-α and IL-6, but had no effect on the signaling pathways of p38 and cytokine IL-8. Furthermore, images obtained after mannan-coated SPION treatment suggested that CAPE induced significantly higher signal intensities than the control or LPS group. Together, these results suggest that CAPE regulates LPS-mediated activation of human neutrophils to reduce phagocytosis.

Immune Enhancement Effects of Neutral Lipids, Glycolipids, Phospholipids from Halocynthia aurantium Tunic on RAW264.7 Macrophages

  • A-yeong Jang;Weerawan Rod-in;Il-shik Shin;Woo Jung Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.476-483
    • /
    • 2024
  • Fractionated lipids of Halocynthia aurantium (Pyuridae) have been demonstrated to possess anti-inflammatory properties. However, their modulatory properties have not been reported yet. Thus, the objective of this study was to determine immune enhancing effects of fractionated lipids from H. aurantium tunic on macrophage cells. The tunic of H. aurantium was used to isolate total lipids, which were then subsequently separated into neutral lipids, glycolipids, and phospholipids. RAW264.7 cells were stimulated with different concentrations (0.5, 1.0, 2.0, and 4.0%) of each fractionated lipid. Cytotoxicity, production of NO, expression levels of immune-associated genes, and signaling pathways were then determined. Neutral lipids and glycolipids significantly stimulated NO and PGE2 production and expression levels of IL-1β, IL-6, TNF-α, and COX-2 in a dose-dependent manner, while phospholipids ineffectively induced NO production and mRNA expression. Furthermore, it was found that both neutral lipids and glycolipids increased NF-κB p-65, p38, ERK1/2, and JNK phosphorylation, suggesting that these lipids might enhance immunity by activating NF-κB and MAPK signaling pathways. In addition, H. aurantium lipids-induced TNF-α expression was decreased by blocking MAPK or NF-κB signaling pathways. Phagocytic activity of RAW 264.7 cells was also significantly enhanced by neutral lipids and glycolipids. These results suggest that neutral lipids and glycolipids from H. aurantium tunic have potential as immune-enhancing materials.