• Title/Summary/Keyword: petroleum contamination

Search Result 123, Processing Time 0.024 seconds

Field Investigation for Identification of Contamination Sources in Petroleum-Contaminated Site (유류로 오염된 부지의 원인자 판단을 위한 현장조사 평가)

  • Park, Jeong Jun;Kim, Sung Hwan
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.141-153
    • /
    • 2018
  • Purpose : The subject site selected in this study was a place that was prepared through the reclamation of foreshore completed in 1973. Since then, the site has been occupied by the industry of ship repair for over 30 years. Method : The results of a precise soil examination conducted in 2013 showed that the site was seriously contaminated with TPH over an area of $10,000m^2$ and GL(-)3.0m in depth, with an expanding coverage of contamination. Results : The soil contamination by refined petroleum products often results in adverse effects to human health and ecological systems, thus the contamination should be purified as soon as possible. Conclusion : Hydrogeological investigation can be employed to assess the groundwater movement and propagation of contamination to determine the potential agents or contaminants in the soil contaminated with high concentration TPH.

Analysis of Jet Fuel for the Judgment of Soil Polluter (토양오염 원인자 판단을 위한 항공유 분석)

  • Lim, Young-Kwan;Jeong, Choong-Sub;Han, Kwan-Wook;Jang, Young-Ju
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • The significance of soil environment is gradually increased due to the soil and underwater contamination caused by petroleum leak accidents. It requires a high cost and long period for the purification of soil compared with other environmental matrix such as water and air. For this reason, it has been embroiled in a legal conflict to find the pollution source and charge of cleanup. In this study, we analyzed the physical properties and typical additives of jet fuel to search a method that can distinguish kerosene and jet fuel contamination. In particular, the chemical marker in kerosene was visualized by the developer and the additives in jet fuel, such as antioxidant and metal deactivator were detected by GC-MS. This study could be used to judge petroleum source at soil contaminant accident sites.

Extraction Characteristics and Quantitational Methods for Total Petroleum Hydrocarbons in Soil

  • Jeon, Chi-Wan;Lee, Jung-Hwa;Song, Kyung-Sun;Lee, Sang-Hak;Lee, Jung-Min
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.119-122
    • /
    • 2003
  • Quantitation methods of total petroleum hydrocarbons to determinate oil contaminated level in soil were discussed. Extraction characteristics of several pretreatment methods and practical detection limit and reappearances in gas chromatography/mass spectrometry. with each pretreatment method were investigated. The obtained results showed that the newly adopted quantitation method and mechanical shaking extraction method using methanol with extraction solvent are more practical and applicable to real sample than the conventional methods. In applying these methods to gasoline, kerosene, fuel oil which are major source of soil contamination, the practical quantitation limit and % relative standard deviation was able to determine with range of 2.5 - 10 ppm, 5 - 7 %.

  • PDF

On-Site Treatment of Soil Contaminated by Heavy Metals and Petroleum using Relocatable Soil Washing Equipment

  • Kim, Taeeung
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • We studied the on-site treatment of soil contaminated by heavy metals and petroleum was tested using relocatable soil washing equipment for greater remediation efficiency. Different combinations of pH and solid/liquid ratio were tested to determine the optimum balance, settling on values of 5 and 1:2, respectively. Next, soils containing Pb, Hg, and petroleum were further tested to assess the optimum number of washing cycles. The remediation efficiency of Pb and Hg in soil contaminated solely by heavy metals was 90.1% and 86.4% after three and two washings, respectively. The remediation efficiency of petroleum in soil contaminated solely by petroleum was 98.8% after one washing. When soil contaminated by both heavy metals and petroleum was cleaned, up to 91.0% of Pb, 86.9% of Hg, and 96.1% of petroleum was removed after two, one, and one washings, respectively. We conducted all remediation efficiencies and concentration reductions satisfied the standard threshold for soil contamination in South Korea.

Characteristics of the Microbial Community Responding to the Vertical Distribution of TPH Concentrations in the Petroleum-Contaminated Site (유류오염지역 부지 내 TPH 수직 농도 분포에 따른 미생물 생태 특성)

  • Song, Soo Min;Moon, Hee Sun;Han, Ji Yeon;Shin, Jehyun;Jeong, Seung Ho;Jeong, Chan-Duck;Cho, Sunghyen
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.51-63
    • /
    • 2022
  • In this study, the TPH(Total Petroleum Hydrocarbon) contamination and microbial ecological characteristics in petroleum-contaminated site were investigated through the correlation among the vertical TPH contamination distribution of the site, the geochemical characteristics, and the indigenous microbial ecology. The high TPH concentration showed in the vicinity of 3~4 m or less which is thought to be affected by vertical movement due to the impervious clay layer. In addition, the TPH concentration was found to have a positive correlation with Fe2+, TOC concentration, and the number of petroleum-degrading bacteria, and a negative correlation with the microbial community diversity. The microbial community according to the vertical distribution of TPH showed that Proteobacteria and Firmicutes at the phylum level were dominant in this study area as a whole, and they competed with each other. In particular, it was confirmed that the difference in the microbial community was different due to the difference in the degree of vertical TPH contamination. In addition, the genera Acidovorax, Leptolinea, Rugoshibacter, and Smithella appeared dominant in the samples in which TPH was detected, which is considered to be the microorganisms involved in the degradation of TPH in this study area. It is expected that this study can be used as an important data to understand the contamination characteristics and biogeochemical and microbial characteristics of these TPH-contaminated sites.

Evaluation of Heavy Metal Contamination in Geochemical Environment around the Abandoned Coal Mine - With special reference to geochemical environment around the Imgok Creek in the Gangreung Coal Field - (폐석탄광 주변 지구화학적 환경의 중금속 오염 평가 - 강릉탄전 임곡천 일대를 중심으로 -)

  • Chon, Hyo-Taek;Kim, Ju-Yong;Choi, Si-Young
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.499-508
    • /
    • 1998
  • The Imgok Creek is located in the Gangreung coal field, which has been known that sulfides are more abundant than other coal fields in Korea, and it has been severly contaminated by acid mine drainage (AMD) discharging from the abandoned coal mines, such as the Youngdong, the Dongduk and the Waryong coal mines. The purposes of this study are to synthetically assess the contamination of natural water, stream sediment and cultivated soils, and to provide the basic data for AMD treatment. Geochemical samples were collected in December, 1996 (dry season) and April, 1997 (after three day's rainfall). TDS of the Youngdong mine water was remarkably higher than those of other mine waters. In the Imgok Creek, concentrations of most elements, except Fe decreased with distance by dilution caused by the inflow of uncontaminated tributaries. From the results of NAMDI and $I_{geo}$ calculation, the Youngdong coal mine was the main contamination source of the study area. Groundwater pollution was not yet confirmed in this study and the paddy and farm land soils were also not yet contaminated by mining activity based on the pollution index ranging from 0.27 to 0.47.

  • PDF

Improvement of Landfarming Applicability from Analysis of Case Studies (토양경작법의 사례 분석을 통한 적용방안 개선)

  • Kim, Jong-Won;Choi, Sang-Il;Yang, Jae-Kyu;Kim, Bo-Kyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.19-28
    • /
    • 2010
  • Considering six screen matrix to select an optimum remediation method for the Kunsan military base contaminated with petroleum oil, the following order was obtained: landfarming > biopile > soil washing > thermal desorption = incineration. When the landfarming method was applied for the remediation of 2,250 $m^3$ soil contaminated with petroleum oil ranging from 500 to 2,404 mg/kg as TPH, contamination level decreased below target concentration 450 mg/kg after 20~42 days depending on the initial contamination. From the evaluation of case studies of landfarming, it is suggested that ratty-truss or single-arch structure is suitable in the landfarming plant for the treatment of large-scale contaminated soil requiring long period of remediation. But, vinyl-house structure is suitable in the landfarming plant for the treatment of small-scale contaminated soil requiring short period of remediation. Therefore vinyl-house structure is recommended in the remediation of contaminated soil less than 5,000 $m^3$ requiring within 1 year of remediation period but ratty-truss or single-arch structure is recommended for the remediation of contaminated soil more than 5,000 $m^3$.

Investigating the role of nano in preserving the environment with new energy and preventing oil pollution

  • Yong Huang;Lei Zhang
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.541-550
    • /
    • 2023
  • The escalating growth of industrial sectors has led to a pervasive global problem—oil pollution, particularly in industrial areas. The release of substantial volumes of oil and its by-products into the environment has resulted in extensive contamination. Multiple factors contribute to the entry of these substances into water bodies and soils, thereby inflicting irreparable consequences on ecosystems, natural resources, and human health. Consequently, it becomes imperative to comprehend the characteristics and behavior of oil pollution, anticipate its impacts, and develop effective mitigation strategies. Understanding this intricate issue requires considering the physicochemical properties of the environment, the interactions between oil and sediments, and biological factors such as evaporation and dissolution. Although the oil industry has brought about remarkable advancements, its activities have raised significant concerns regarding pollution from extraction and production processes. Oil-rich nations face a particularly challenging predicament of soil pollution caused by petroleum compounds. The areas surrounding oil exploration mines and refineries often endure contamination due to oil leakages from storage tanks and transmission lines resulting from deterioration and damage. Investigating the dispersion of such pollutants and devising methods to remediate petroleum-contaminated soil represent crucial and intricate issues within the realm of environmental geotechnics.

Case Study of Health Risk Assessment and Preliminary Remediation Goals Calculation for the Petroleum Contaminated Site (유류 오염지역 토양의 위해성 평가 및 사전복원목표 산정 사례연구)

  • 정규혁
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.4
    • /
    • pp.347-355
    • /
    • 2002
  • As concerns on the effects of soil contamination on human health have grown, more efforts have been made to quantify the effects. One of such efforts is the development of risk assessment methodology. The fundamental objectives of this approach is to investigate the alternative options that reduce the risk of hazardous chemicals results from environmental pollution, which will eventually lead to an accomplishment of removement of identified toxicants in polluted environment. The U.S. EPA Risk Assessment guidance for the superfund (RAGS) provides a methods for assessing the health risk of contaminated soils and determining the preliminary remediation goals (PRGs). Using this approach, we assessed the health risk and preliminary remediation goals of petroleum contaminated site in Kyounggi province.

Enhancement of Soil Flushing Method by Ultrasonic Radiation on Diesel Contaminated Soils (디이젤 오염토 수세시 초음파가 세척률 증가에 미치는 영향에 관한 연구)

  • 김영욱;김지형;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.401-406
    • /
    • 2000
  • Spilling of petroleum hydrocarbons such as gasoline, motor oils, and diesel fuel from underground storage tanks (USTs) is a major source of contamination to ground water and soils. In response to the need of developing an effective and economical cleanup technique, this study investigates the effectiveness of using sonication to enhance the soil flushing method. The study involves laboratory testing, and the testing was conducted using a specially designed and fabricated device to determine the effect of sonication on contaminant removal. The sonication was applied at 20 kHz frequency under different power levels. Test soil was Joomoonjin Sand, and diesel fuel was used as a contaminant of soil flushing test. The results of the investigation show that sonication enhanced the contaminant removal from soils significantly, and the degree of enhancement varied with power levels of sonication. Based on the results of the study, it is concluded that the flushing method with sonication has a great potential to become an effective method for removing petroleum hydrocarbons from the contaminated ground.

  • PDF