• Title/Summary/Keyword: petroleum

Search Result 8,028, Processing Time 0.035 seconds

A Study on the Effect Analysis and Improvement of Cardiopulmonary Resuscitation on Life-rafts (구명뗏목에서의 비상대응 심폐소생술의 효과 분석 및 개선에 관한 연구)

  • Lee, Chang-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.433-440
    • /
    • 2019
  • Offshore working environments such as ships, offshore oil and gas plants, and offshore wind turbines are isolated and directly exposed to rough seas, which pose high risks of safety accidents. Therefore, all workers in offshore plants should be able to cope with emergency situations and must be qualified according to relevant laws and regulations such as the International Convention on Standards of Training, Certification and Watchkeeping for Seafarers (STCW Convention) and Offshore Petroleum Industry Training Organization (OPITO) standards. In particular, marine workers should be able to perform cardiopulmonary resuscitation (CPR) in isolated locations or enclosed and confined spaces such as those in life-boats, life-rafts, rescue-boats, etc. Because the floor material is made of rubber, it may be difficult to perform chest compressions in life-rafts used to escape from emergency situations in ships or offshore plants. Chest compressions performed on life-rafts may reduce the accuracy of CPR and increase fatigue for those providing aid. To measure the accuracy and fatigue of those performing CPR in life-rafts, 15 experimenters with more than five years of experience as first aid instructors were exposed to different CPR environments in a marine safety training center equipped with an artificial wave generator. The results showed that the accuracy of CPR in the classroom was 99.6 %, but that in various life-raft environments was only 84 %. T-verification of the two sites confirmed the reduced accuracy of CPR performed on life-rafts. CPR on life-rafts should be performed in groups of two and with the use of automated chest compression devices.

Solar ESS Peak-cut Simulation Model for Customer (수용가 대응용 태양광 ESS 피크컷(Peak-cut) 시뮬레이션 모델)

  • Park, Seong-Hyeon;Lee, Gi-Hyun;Chung, Myoung-Sug;Chae, U-ri;Lee, Joo-Yeuon
    • Journal of Digital Convergence
    • /
    • v.17 no.7
    • /
    • pp.131-138
    • /
    • 2019
  • The world's electricity production ratio is 40% for coal, 20% for natural gas, 16% for hydroelectric power, 15% for nuclear power and 6% for petroleum. Fossil fuels also cause serious problems in terms of price and supply because of the high concentration of resources on the earth. Solar energy is attracting attention as a next-generation eco-friendly energy that will replace fossil fuels with these problems. In this study, we test the charge-operation plan and the discharge operation plan for peak-cut operation by applying the maximum power demand reduction simulation. To do this, we selected the electricity usage from November to February, which has the largest amount of power usage, and applied charge / discharge logic. Simulation results show that the contract power decreases as the peak demand power after the ESS Peak-cut service is reduced to 50% of the peak-target power. As a result, the contract power reduction can reduce the basic power value of the customer and not only the economic superiority can be expected, but also contribute to the improvement of the electric quality and stabilization of the power supply system.

Electrochemical Performance of Graphite/Silicon/Pitch Anode Composites Bonded with Graphite Surface PVP and Silica Amine Function Group (흑연 표면의 PVP와 실리카의 아민 작용기로 결합된 흑연/실리콘/피치 음극 복합소재의 전기화학적 성능)

  • Lee, Su Hyeon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.118-123
    • /
    • 2019
  • In this study, the electrochemical characteristics of Graphite/Silicon/Pitch anode composites were analyzed to improve the low theoretical capacity of graphite as a lithium ion battery. The Graphite/Silica composites were synthesized by bonding silica onto polyvinylpyrrolidone coated graphite. The surface of used silica was treated with (3-Aminopropyl)triethoxysilane(APTES). Graphite/Silicon/Pitch composites were prepared by carbonization of petroleum pitch, the fabrication processes including the magnesiothermic reduction of nano silica to obtain silicon and varying the mass ratio of silica. The Graphite/Silicon/Pitch composites were analysed by XRD, SEM and XRD. Also the electrochemical performances of Graphite/Silicon/Pitch composite as the anode of lithium ion battery were investigated by constant current charge/discharge, rate performance, cyclic voltammetry and electrochemical impedance tests in the electrolyte of $LiPF_6$ dissolved in organic solvents (EC:DMC:EMC=1:1:1 vol%). The Graphite/Silicon/Pitch anode composite (silica 28.5 in weight) has better capacity (537 mAh/g). The cycle performance has an excellent capacity retention to 30th cycle of 95% and the retention rate capability of 98% in 0.1 C/0.2 C.

The Study on the Fire Monitoring Dystem for Full-scale Surveillance and Video Tracking (전방위 감시와 영상추적이 가능한 화재감시시스템에 관한 연구)

  • Baek, Dong-hyun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.40-45
    • /
    • 2018
  • The omnidirectional surveillance camera uses the object detection algorithm to level the object by unit so that broadband surveillance can be performed using a fisheye lens and then, it was a field experiment with a system composed of an omnidirectional surveillance camera and a tracking (PTZ) camera. The omnidirectional surveillance camera accurately detects the moving object, displays the squarely, and tracks it in close cooperation with the tracking camera. In the field test of flame detection and temperature of the sensing camera, when the flame is detected during the auto scan, the detection camera stops and the temperature is displayed by moving the corresponding spot part to the central part of the screen. It is also possible to measure the distance of the flame from the distance of 1.5 km, which exceeds the standard of calorific value of 1 km 2,340 kcal. In the performance test of detecting the flame along the distance, it is possible to be 1.5 km in width exceeding $56cm{\times}90cm$ at a distance of 1km, and so it is also adaptable to forest fire. The system is expected to be very useful for safety such as prevention of intrinsic or surrounding fire and intrusion monitoring if it is installed in a petroleum gas storage facility or a storing place for oil in the future.

Analysis of CO2 Emission Depending on Hydrogen Production Methods in Korea (국내 수소 생산에 따른 CO2 발생량 분석)

  • Han, Ja-Ryoung;Park, Jinmo;Kim, Yohan;Lee, Young Chul;Kim, Hyoung Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • Because of environmental pollution problem, interests in hydrogen energy has been concentrating sharply. Especially in Korea, the market related with fuel cell vehicles and hydrogen refueling stations is increasing actively under the government-led. However, the actual contributions to environmental improvement effect of hydrogen energy is required to be evaluated with representing reality. In this sense, lots of conventional analyzing tools have some limitations to adapt in Korea's situation directly. It is caused by the differences of raw energy market between the US and Korea. That is, most of analytic tools are developed by representing energy market of the US, where can produce variety of raw feed energy sources. Therefore, in this paper, we propose mass balance based numerical analyzing method, which is suitable for the actual hydrogen production process in Korea for exact evaluation of $CO_2$ emission amount in this country. Using proposed method, we has demonstrated reformed hydrogen from natural gas, LPG and naphtha, electrolysis-based hydrogen, and COG-based hydrogen. Furthermore, with the comparison of GREET program analysis results, robustness of numerical analysis method is demonstrated.

A Case Study of Sea Bottom Detection Within the Expected Range and Swell Effect Correction for the Noisy High-resolution Air-gun Seismic Data Acquired off Yeosu (잡음이 포함된 여수근해 고해상 에어건 탄성파 탐사자료에 대한 예상 범위에서의 해저면 선정 및 너울영향 보정 사례)

  • Lee, Ho-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.116-131
    • /
    • 2019
  • In order to obtain high-quality high-resolution marine seismic data, the survey needs to be carried out at very low-sea condition. However, the survey is often performed with a slight wave, which degrades the quality of data. In this case, it is possible to improve the quality of seismic data by detecting the exact location of the sea bottom signal and eliminating the influence of waves or swells automatically during data processing. However, if noise is included or the sea bottom signal is weakened due to sea waves, sea bottom detection errors are likely to occur. In this study, we applied a method reducing such errors by estimating the sea bottom location, setting a narrow detection range and detecting the sea bottom location within this range. The expected location of the sea bottom was calculated using previously detected sea bottom locations for each channel of multi-channel data. The expected location calculated in each channel is also compared and verified with expected locations of other channels in a shot gather. As a result of applying this method to the noisy 8-channel high-resolution air-gun seismic data acquired off Yeosu, the errors in selecting the strong noise before sea bottom or the strong subsurface reflected signal after the sea bottom signal are remarkably reduced and it is possible to produce the high-quality seismic section with the correction of ~ 2.5 m swell effect.

Fifty Years of Scientific Ocean Drilling (1968-2018): Achievements and Future Direction of K-IODP (해양 과학시추 50년 (1968-2018): 한국의 성과 및 미래 방향)

  • KIM, GIL YOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.30-48
    • /
    • 2019
  • The year 2018 is the $50^{th}$ anniversary of scientific ocean drilling. Nevertheless, we know more about the surface of the moon than the Earth's ocean floor. In other words, there are still no much informations about the Earth interior. Much of what we do know has come from the scientific ocean drilling, providing the systematic collection of core samples from the deep seabed. This revolutionary process began 50 years ago, when the drilling vessel Glomar Challenger sailed into the Gulf of Mexico on August 11, 1968 on the first expedition of the federally funded Deep Sea Drilling Project (DSDP). DSDP followed successively by Ocean Drilling Program (ODP), Integrated Ocean Drilling Program (old IODP), and International Ocean Discovery Program (new IODP). Concerning on the results of scientific ocean drilling, there are two technological innovations and various scientific research results. The one is a dynamic positioning system, enables the drilling vessel to stay fixed in place while drilling and recovering cores in the deep water. Another is the finding of re-entry cone to replace drill bit during the drilling. In addition to technological innovation, there are important scientific results such as confirmation of plate tectonics, reconstruction of earth's history, and finding of life within sediments. New IODP has begun in October, 2013 and will continue till 2023. IODP member countries are preparing for the IODP science plan beyond 2023 and future 50 years of scientific ocean drilling. We as IODP member also need to participate in keeping with the international trend.

Effects of Pitch Softening Point-based on Soft Carbon Anode for Initial Efficiency and Rate Performance (피치계 소프트 카본 음극재 제조 시 피치의 연화점이 음극재 초기 효율 및 율속 특성에 미치는 영향)

  • Kim, Kyung Soo;Im, Ji Sun;Lee, Jong Dae;Kim, Ji Hong;Hwang, Jin Ung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.331-336
    • /
    • 2019
  • In this study, required properties and optimized procedure conditions for the pitch based soft carbon anode of lithium ion battery was investigated for improving the initial efficiency and rate performance. Each petroleum residue was thermally treated at 360, 370, and $410^{\circ}C$ for 3 hours to synthesis a pitch and the corresponding pitch shows the softening point of 86, 98, and $152^{\circ}C$, respectively. The elemental analysis and thermal characteristics of the pitch were investigated by EA analysis and TGA. It was noted that the low H/C and improved thermal stability were obtained with the high softening point. The obtained pitch was carbonized at $1,200^{\circ}C$ for 1 hour to produce a soft carbon based anode. As a result of investigating the crystal structure by XRD analysis, it was found that the crystallinity of soft carbon increased with increasing the softening point. It was considered that relatively higher boiling components and decreases in the evaporation component resulted the components participation for cyclization during the heat treatment process. The soft carbon based anode with an improved crystallinity shows the enhanced initial efficiency and rate performance. The mechanism of both improvements was also discusssed based on the developed crystal structure of soft carbon based anode materials.

Structural Analysis of Volatile Matters and Heavy Oil Fractions from Pyrolysis Fuel Oil by the Heat Treatment Temperature (열처리 온도에 따른 열분해 연료유 내 휘발유분 및 잔류 중질유분의 구조 분석)

  • An, Donghae;Kim, Kyung Hoon;Kim, Jong Gu;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.297-302
    • /
    • 2019
  • In order to investigate structural changes of the pyrolysis fuel oil (PFO), the volatile matters and heavy oil fractions were separated from PFO by heat treatment temperature. As a result of $^1H-NMR$ analysis of volatile matters, 1~2 ring aromatic compounds contained in the petroleum residue were mostly removed at a temperature before $340^{\circ}C$. Moreover, new peaks corresponding to aliphatic hydrocarbons were detected at the chemical shift of 2.0~2.4 ppm. It is attributed that the aliphatic hydrocarbon sidechain was cracked from the aromatic compound by the cracking reaction occurred at $320^{\circ}C$. The C/H mole ratio and aromaticity increased with increasing the heat treatment temperature. Therefore, from the structural analysis results of heavy oil fractions and volatile matters from PFO, the decomposition of the aliphatic sidechain by cracking reaction and the separation of volatile matters by boiling point of components were mostly affected structure changes of the PFO.

Review of Quantification of Fracture Characteristics Based on Topological Analysis (위상기하 분석법을 이용한 단열계 특성 정량화의 소개)

  • Son, Hyorok;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.1-17
    • /
    • 2021
  • It is important to evaluate the fracture network in a rock volume because fractures control the ground conditions and fluid flow characteristics. Therefore, various attempts have been made to quantify fracture networks to better understand ground and flow conditions. The use of fracture density alone (a quantitative parameter based on geometric analysis) does not fully explain the evolution of fracture networks, or quantify the spatial relationship (e.g. connectivity) of fractures in a rock mass. Therefore, the need for fracture network characterization based on topological analysis has recently emerged. In Korea however, the topological analysis of fracture networks within a rock mass has rarely been studied. As such, the definition of the topological analysis of fracture networks and the graph theory related to the topological analysis are briefly summarized in this study. We also introduce an application method for these analyses to fracture characterization. If the topological method is used for the analysis of fracture networks, it can also be adopted to analyze fluid flow characteristics of groundwater, characterize petroleum reservoirs, and analyze the evolution of a fracture network. In addition, topological analysis can be useful for site selection of major facilities such as nuclear waste disposal sites because it can be used to evaluate the stability of the potential sites.