• Title/Summary/Keyword: petrochemical industries

Search Result 83, Processing Time 0.026 seconds

석유화학공장의 소화설비에 대한 고찰

  • Lee, Hyeong-Seop
    • Fire Protection Technology
    • /
    • s.12
    • /
    • pp.21-30
    • /
    • 1992
  • This fire fighting systems engineering specification includes the design and installation requirements which normally adopted for petroleum refineries and petrochemical industries. Also, this shall be applied the Korean Fire Safety Law, in addition to the Korean Industry Safety & Health Law and NFPA Code.

  • PDF

Concentrations of Water-soluble Particulate, Gaseous tons and Volatile Organic Compounds in the Ambient Air of Ulsan (울산 대기 중의 입자상, 기체상 물질의 수용성 이온 성분과 휘발성 유기화합물의 농도)

  • 나광삼;김용표
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.4
    • /
    • pp.281-292
    • /
    • 1998
  • Ambient concentrations of gaseous, particulate phase ionic species, and VOCs (volatile organic compounds) were measured at two monitoring sites in the City of Ulsan during August 1997: one in industrial area and the other in downtown area. At each site, a three- stage filter pack sampler was used to collect fine particles and gaseous species, and air for VOC analysis was collected in stainless steel canisters. Concentrations of the ionic species at both sites were similar to each other. The VOC concentrations at the industrial site were approximately twice higher than those at the downtown site. This might be mainly due to the release of VOCs from the petrochemical industries. Daily variations of VOC concentrations at the industrial site were higher than that at the downtown site. This might be explained by the fact that emissions from industries were more irregular than those in downtown. The VOC concentrations in downtown were affected by both the local emissions and the emission from the petrochemical industries. The concentrations of selected hazardous organic components (HAPs) at the industrial site were similar to those of Yocheon industrial area but slightly higher than other cites and industrial areas, while those at the downtown site were comparable to those in other urban areas.

  • PDF

Thermal Characteristics of Waste Organic Sludges Discharged from an Chemical Product Manufacturing Industry (화학제품제조업에서 배출되는 폐 유기성슬러지의 열적 특성)

  • Kim, Min-Choul;Lee, Gang-Woo;Lee, Man-Sig;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1745-1753
    • /
    • 2008
  • We analyzed the physical and chemical properties such as proximate analysis, ultimate analysis, heating values, thermogravimetric analysis, and combustion test for the organic sludge discharged from chemical and petrochemical product manufacturing industries in the industrial complex. The average combustible and ash content of organic sludges from chemical and petrochemical product manufacturing industries were 17.42%, 7.45%, and 18.25%, 4.22%, respectively. The C, H, O, N, and S compositions for chemical and petrochemical product manufacturing industries were 33.06, 4.34, 24.81, 5.18, and 0.72%. And those compositions for petrochemical product manufacturing industries were 36.58, 4.74, 26.79, 5.09, and 0.49%, respectively. From the TGA test, the minimum temperature for combustion of the sludge discharged from B company was $700^{\circ}C$ for direct use for energy and 2 sludges(F and N companies) were about $600^{\circ}C$. According to the basic combustion test, high concentration of CO was formed because oxidation and pyrolysis reaction take place in the batch type reactor at the same time. From this phenomena we could obtain the significant data for the overheating and breakage of furnace.

Study on the Pollution-heaven Hypothesis Focusing on Pollution-Intensive Industries (환경규제 강화로 인한 산업재배치 효과에 관한 연구 -오염다배출산업을 중심으로-)

  • Lho, Sangwhan
    • Environmental and Resource Economics Review
    • /
    • v.11 no.1
    • /
    • pp.121-144
    • /
    • 2002
  • The purpose of this study is to test pollution-heaven hypothesis on the korean pollution-intensive industries, that is, textile and clothing, petrochemical and primary metal industry. The empirical study examines that foreign direct investment(FDI) of korean pollution-intensive industries regresses on couple of exogenous variables and the environmental regulation on FDI. As the environmental regulation is not directly observed, it uses $CO_2$ emissions as the pollutant. The results of the study show that the environmental regulation in a host country is an insignificant determinant of FDI for the korean polluting industries. That is, they do not support Leonard (1988), Xing and Kolstad (2000) that the hypothesis is a significant for heavily polluting industries.

  • PDF

Future Strategy of the Korean Petrochemical Industry by Analysing Integrated Emerging Issues (한국 석유화학산업의 미래전략을 위한 융합적 이머징 이슈 분석)

  • Kim, Jong-Chul;Ko, Young-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.307-315
    • /
    • 2017
  • This study aims to propose a methodology for future strategies of the Korean petrochemical industry. Instead of using static models or trade related statistical analysis, we derived emerging issues of the Korean petrochemical industry through survey in accordance with the STEPPER analysis. The participants of the survey were limited to leading experts of the field, such as businessmen, researchers and professors. Also, I observed whether the current driving forces are suitable in analyzing the future. Furthermore, emerging trends and emerging issues as far as 2040 were also extracted through horizon scanning and expert interviews. Through this study, three factors, which are the global oil prices, economic prospects, and core material development, have been confirmed. In the future, I believe that not only petrochemical industry, but also other industries such as steel, autos, shipbuilding and so on, can be studied for future scenarios and strategies as well.

Health Effects of the Offensive Odor in Residents Living Near the Petrochemical Industries Complex Area and the Thermoelectric Power Plant (석유화학공단과 화력발전소 주변지역 주민들이 인식하는 악취발생과 건강영향의 관련성 연구)

  • Lee, Jin-Heon;Kang, Hee-Sook;Kim, Byeong-Bin
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.2 s.95
    • /
    • pp.83-91
    • /
    • 2007
  • This study investigated the health effects of offensive odor in residents living near the petrochemical industry complex area(PICA) and the thermoelectric power plant(TPP) by using questionnaire. Residents who felt the offensive odor were 58.3% at PICA, 50.9% at TPP and 24.4% at classical fishing and agrarian villages (CFAV)(p=0.000). People who answered that the offensive odor was sever at CFAV were 95.2% only on summer, but at PICA and TPP, were 44.1% and 57.3% on Spring, 62.4% and 68.8% on Summer, 22.0% and 31.7% on Autumn, and 21.7% and 25.7% on Winter, respectively. Average days that the odor occurred were 4.4 days/month at CFAV, but 12.0 and 9.5 days/month at PICA and TPP, respectively. People who experienced the sleep disturbance were 28.0% and 27.1% at PICA and TPP, respectively. The most frequently subjective symptoms were headache(0.953), frequently sneezing(0.825), itchy eyes(0.766), and stimulating eyes(0.709) at PICA, and headache(1.082), itchy eyes(0.931), itchy skin(0.826), and frequent sneezing(0.674) at TPP, respectively. At PICA and TPP, the occurrence rates of diseases in respondents' families were 15.4% and 15.6% for asthma, 12.4% and 9.2% for respiratory diseases, 27.8% and 31.2% for skin diseases, and 9.1% and 6.9% for nervous diseases, respectively. In conclusion, many residents who living near the PICA and TPP experienced the offensive odor during four seasons, especially high on summer, the most frequently subjective symptoms such as headache, itchy and stimulating eyes, frequently sneezing, and some diseases among their families such as asthma, respiratory diseases, skin diseases, and nervous diseases.

The Status of Domestic Hydrogen Production, Consumption, and Distribution (국내 수소 생산, 소비 및 유통 현황)

  • Gim, Bong-Jin;Kim, Jong-Wook;Choi, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.391-399
    • /
    • 2005
  • This paper deals with the survey of domestic hydrogen production, consumption, and distribution. The amount of domestic hydrogen production and consumption has not been identified, and we survey the amount of domestic hydrogen production and consumption by industries. The hydrogen production industries are classified into the oil industry, the petrochemical industry, the chemical industry, and the other industry. In 2004, the amount of domestic hydrogen production was 972,601 ton, which corresponded to 1.9% of the global hydrogen production. The oil industry produced 635,683 ton(65.4%), the petrochemical industry produced 241,970 ton(24.9%), the chemical industry produced 66,250 ton(6.8%), the other industry produced 28,698 ton(2.9%). The hydrogen consumptions of corresponding industries were close to the hydrogen productions of industries except that of the other industry. Most hydrogen was used as non-energy for raw materials and hydrogen additions to the process. Only 122,743 ton(12.6%) of domestic hydrogen was used as energy for heating boilers. In 2004, 47,948 ton of domestic hydrogen was distributed. The market shares of pipeline, tube trailers and cylinders were 84.4% and 15.6%, respectively. The purity of 31,848 ton(66.4%) of the distributed hydrogen was 99.99%, and 16,100 ton(33.6%) was greater than or equal to 99.999%. Besides domestic hydrogen, we also identify the byproduct gases which contain hydrogen. The iron industry produces COG( coke oven gas), BFG(blast furnace gas), and LDG(Lintz Donawitz converter gas) that contain hydrogen. In 2004, byproduct gases of the iron industry contained 355,000 ton of hydrogen.

A Design of Wireless Sensor Network Based on ZigBee Technology in Petrochemical Industry

  • Huang, Song;Zhou, Qingsen;Zhang, Ke;Suh, Hee-Jong
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.27-28
    • /
    • 2007
  • In this paper, the Wireless Sensor Network (WSN) based on ZigBee technology was devised and developed. Wireless communication was applied to petrochemical domain, like other industries. And sensor network of IEEE 802.15.4 protocol stack diagram was described. Then, by analyzing the protocol, the software systems included the communication Protocol and point-to-point network were implemented with Freescale Semiconductor's product MC13192-SARD DSK board. After that, the performance of this design system was evaluated, and finally, by using PC Graphic User Interface (GUI) and IDE CW08 V3.1 programming tool, the real time communication data and the curve function were displayed.

  • PDF

Characteristics of Occupational Exposure to Benzene during Turnaround in the Petrochemical Industries

  • Chung, Eun-Kyo;Shin, Jung-Ah;Lee, Byung-Kyu;Kwon, Ji-Woon;Lee, Na-Roo;Chung, Kwang-Jae;Lee, Jong-Han;Lee, In-Seop;Kang, Seong-Kyu;Jang, Jae-Kil
    • Safety and Health at Work
    • /
    • v.1 no.1
    • /
    • pp.51-60
    • /
    • 2010
  • Objectives: The level of benzene exposure in the petrochemical industry during regular operation has been well established, but not in turnaround (TA), where high exposure may occur. In this study, the characteristics of occupational exposure to benzene during TA in the petrochemical companies were investigated in order to determine the best management strategies and improve the working environment. This was accomplished by evaluating the exposure level for the workers working in environments where benzene was being produced or used as an ingredient during the unit process. Methods: From 2003 to 2008, a total of 705 workers in three petrochemical companies in Korea were studied. Long- and short-term (< 1 hr) samples were taken during TAs. TA was classified into three stages: shut-down, maintenance and start-up. All works were classified into 12 occupation categories. Results: The long-term geometric mean (GM) benzene exposure level was 0.025 (5.82) ppm (0.005-42.120 ppm) and the short-term exposure concentration during TA was 0.020 (17.42) ppm (0.005-61.855 ppm). The proportions of TA samples exceeding the time-weighted average, occupational exposure level (TWA-OEL in Korea, 1 ppm) and the short-term exposure limit (STEL-OEL, 5 ppm) were 4.1% (20 samples of 488) and 6.0% (13 samples of 217), respectively. The results for the benzene exposure levels and the rates of exceeding the OEL were both statistically significant (p < 0.05). Among the 12 job categories of petrochemical workers, mechanical engineers, plumbers, welders, fieldman and scaffolding workers exhibited long-term samples that exceeded the OEL of benzene, and the rate of exceeding the OEL was statistically significant for the first two occupations (p < 0.05). Conclusion: These findings suggest that the periodic work environment must be assessed during non-routine works such as TA.

ADAPTIVE FUZZY CONTROLLER IMPLEMENTED ON THERMAL PROCESS

  • Abd el-geliel, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.84-89
    • /
    • 2003
  • Fuzzy controller is one of the succeed controller used in the process control in case of model uncertainties. But it my be difficult to fuzzy controller to articulate the accumulated knowledge to encompass all circumstance. Hence, it is essential to provide a tuning capability. There are many parameters in fuzzy controller can be adapted, scale factor tuning of normalized fuzzy controller is one of the adaptation parameter. Two adaptation methods are implemented in this work on an experimental thermal process, which simulate heating process in liquefied petroleum gases (LPG) recovery process in one of petrochemical industries: Gradient decent (GD) adaptation method; supervisory fuzzy controller. A comparison between the two methods is discussed.

  • PDF