• Title/Summary/Keyword: pet

Search Result 4,111, Processing Time 0.038 seconds

A Study on Polypropylene and Surface Modified PET Fiber Composites (표면처리된 PET 섬유와 PP 복합재료에 관한 연구)

  • Hahm, Moon-Seok;Kim, Chang-Hyeon;Ryu, Ju-Whan
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • We confirmed that poly (ethylene terephthalate) (PET) fiber had the possibility to improve the mechanical properties of polypropylene (PP) by fabricating PP/PET fiber composites because PET enhanced mechanical properties and higher melting temperature than PP. But lower compatibility of between PP and PET fibers induced poor mechanical properties of PP/PET fiber composites in spite of incorporating PP-g-MAH as compatibilizer. To solve these problems of PP/PET fiber composites, we carried out a surface treatment on PET fiber using NaOH solution and Prepared PP/PET fiber composites with good mechanical properties by adding PP-g-MAH as a compatibilizer Then the behavior of the mechanical properties was correlated with the results obtained from SEM and IR spectroscopy.

Mechanical Separation of Wasted PET Bottle for Recycling (폐 PET병의 재활용을 위한 기계적 분리)

  • 도갑수;권기홍;이근원;이수문
    • Resources Recycling
    • /
    • v.3 no.1
    • /
    • pp.44-51
    • /
    • 1994
  • PET bottles were composed of several different materials such as PET, HDPE, PVC and PP, it is necessary for recycling of PET bottles to precede seperation of each material. This study is purposed of recycling of PET bottles by separation using float and sink method. Pure PET is obtained a proportion of 94% on condition that bottle labels were removed by using tap water. In case the labels were attached on the bottles, PET was unable to obtain because of PVC and PET sink, and PP and HDPE float. Therefore, the labels should be removed before separation of PVC lebels substituted for PP or PE material. The various physical properties of recovered PET and HDPE were measured and compared with the original PET and HDPE, and it is identified that recycling is possible as a result.

  • PDF

Effect of Nonionic Surfactant Solutions on Wetting and Absorbency of Polyethylene Terephthalate(PET) Fabrics (Part II) -Surfactants Characteristics and Fabric Properties- (비이온계 계면활성제 수용액이 PET직물의 습윤특성에 미치는 영향 (제2보) -계면활성제와 직물의 특성-)

  • Kim, Chun-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.12 s.148
    • /
    • pp.1546-1553
    • /
    • 2005
  • The wetting behavior and liquid transport of nonionic surfactant solutions; Span 20 and Tween 20, 40, 60, 80, 21, 61, 81, 65 & 85: in polyethylene terephthalate(PET) fabrics are reported. Five different PET fabrics are used in this study. PET 1, 2 & 3 have different compactness in structure. PET 4 & 5 have similar physical properties to PET 2, however, PET 4 has heat set finish and PET 5 with rewetting agent. The wetting and water retention properties of PET fabrics are greatly improved by addition of nonionic surfactants. The aqueous liquid retention(W) vs. cosq and W vs. adhesion tension has positive linear relationship. Hydrophilic surfactants which have short hydrophobes and surfactants with unsaturated hydrophobe structures are more efffctive in improving the wetting properties of PET fabrics. PET fabric which has larger thread spacing shows greater value of water retention ratio(W/H) than PET fabric with smaller thread spacing if there are no surfactants present in the system, however, W/H values become very similar among these PET fabrics when the surfactants are added. If there are no surfactants present in the system, PET with heat set finish has smaller value and PET with rewetting agent has greater value of W/H than PET without finish even though the fabrics have the similar physical properties.

Image Evaluation Via $SUV_{LBM}$ for Normal Regions of VOI by Using Whole Body Images Obtained from PET/MRI and PET/CT (F-18 FDG PET/MRI와 PET/CT 전신 영상에서 VOI를 이용한 정상부위의 $SUV_{LBM}$-최대치에 의한 영상평가)

  • Park, Jeong-Kyu;Kim, Sung-Kyu;Cho, Ihn-Ho;Kong, Eun-Jung;Park, Meyong-Hwan
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.68-75
    • /
    • 2013
  • The purpose of this research is to compare and analyze $SUV_{LBM}$-maximum of normal regions using VOI (the volume of interest) in order to enhance the diagnostic level in whole body images of PET/CT and PET/MRI for 26 health check-up participants. In particular, we try to set up $SUV_{LBM}$-maximum data that can be used in synchronous evaluation for PET/CT and PET/MRI without contrast media. The evaluation of $SUV_{LBM}$-maximum for normal regions of whole body PET/CT and whole body PET/MRI shows that the image of PET/MRI differs very significantly from the reference image of PET/CT (p<0.0001). However, they exhibit high correlations in view of statistics (R>0.8). From this research, we suggest that the decision in the evaluation of $SUV_{LBM}$-maximum for PET/MRI should be made with the reduction of about 26.3%, while one should decide with the reduction of about 29.3% when the contrast media is used. It is helpful to interpret all image of PET/CT and PET/MRI using $SUV_{LBM}$-maximum for convenience and efficiency.

Combined PET/CT in Oncology (종양핵의학에서 PET/CT의 역할)

  • Kang, Keon-Wook
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.1
    • /
    • pp.80-86
    • /
    • 2002
  • Presently, PET is widely used in oncology, but suffers from limitations of poor anatomical information. To compensate for this weakness, a combined PET/CT has been developed by Professor Townsend at the University of Pittsburgh Medical Center. The prototype was designed as PET and CT components combined serially in a gantry. The CT images provide not only accurate anatomical location of the lesions but also transmission map for attenuation correction. More than 300 cancer patients have been studied with the prototype of PET/CT since July, 1998. The PET/CT studies affected the managements in about $20{\sim}30%$ of cancer patients. These changes are a consequence of the more accurate localization of functional abnormalities, and the distinction of pathological from normal physiological uptake. Now a variety of combined PET/CT scanners with high-end PET and high-end CT components are commercially available. With the high speed of multi-slice helical CT, throughput of patient's increases compared to conventional PET. Although some problems (such as a discrepancy in breathing state between the two modalities) still remain, the role of PET/CT in oncology is very promising.

Thermal Properties and Crystallization Behaviors of Poly(ethylene terephthalate) at Various Annealing Conditions (열처리 조건에 따른 폴리(에틸렌 테레프탈레이트)의 열적 특성 및 결정화 거동)

  • 류민영;배유리
    • Polymer(Korea)
    • /
    • v.27 no.2
    • /
    • pp.113-119
    • /
    • 2003
  • The thermal properties and crystallization behaviors of poly(ethylene terephthalate) (PET) were investigated by controlling the annealing conditions of PET sample, such as relative humidity, temperature, and time. The variations of moisture content, glass transition temperature ($T_g$) and cold crystallization temperature ($T_{\propto}$) were examined after annealing the PET sample. Subsequently crystallization process was performed with the annealed PET specimen, and then the degree of crystallinity and heat distortion temperature (HDT) of variously crystallized PET specimen were examined. Residual stress relaxation in the injection molded PET sample after annealing was also observed through polarized films. Moisture content in the PET specimen increased up to 6000 ppm with increasing the relative humidity, temperature, and time of annealing. $T_g$ and $T_{\propto}$ of the annealed PET specimen decreased with increasing moisture content. The degree of crystallinity increased as increasing moisture content in the PET specimen. However for same moisture content, the degree of crystallinity varied with annealing conditions. The relaxations of residual stress in the PET sample differed from annealing conditions, and the maximum degree of crystallinity increased with decreasing residual stress in the PET sample.

Application of PET in Breast Cancer (유방암에서 PET의 응용)

  • Noh, Dong-Young
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.1
    • /
    • pp.34-38
    • /
    • 2002
  • Positron emission tomography(PET) is an imaging method that employs radionuclide and tomography techniques. Since 1995, we applied PET not only to the diagnosis of breast cancer but also to the detection of abnormalities in the augmented breast and to the detection of metastasis. Until 2001, we evaluated 242 breast cases by PET at PET center of Seoul National University Hospital. Our group has reported serially at the international journals. In the first report, PET showed high sensitivity for detecting breast cancer, both the primary and axillary node metastasis. A total of 27 patients underwent breast operations based on PET results at Seoul National University Hospital from 1995 to 1996. The diagnostic accuracy of PET were 97% for the primary tumor mass and 96% for axillary lymph node metastasis. In case of the breast augmented, PET also showed excellent diagnostic results for primary breast cancer and axillary lymph node metastasis where mammography and ultrasound could not diagnose properly. PET also had outstanding results in the detection of recurrent or metastatic breast cancer(sensitivity 94%, specificity 80%, accuracy 89%). In addition, our study gave some evidence that PET could be applied further to evaluate the growth rate of tumors by measuring SUV, and finally to prognosticated the disease. PET could also be applied to evaluate the response after chemotherapy to measure its metabolic rate and size. In conclsion, PET is a highly sensitive, accurate diagnostic tool for breast cancer of primary lesion in various conditions including metastasis.

Development of Synthetic Sizing Agent Using Recycling Polyethylene Terephtahalate and its Sizing Efficiency (Part 1) - Manufacture of sizing agent with recycling PET - (재활용 PET를 활용한 합성 사이즈제 개발 및 종이의 내수성 부여에 관한 연구 (제1보) - 재활용 PET를 이용한 내수제 제조 -)

  • Park, Jae-Seok;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.4
    • /
    • pp.27-33
    • /
    • 2008
  • Polyethylene terephtahalate has been used in several areas such as fiber, film, bottle, and disposable products. Production of PET has been rapidly increasing these days. Since PET is a semi-permanent material, it has a non-biodegradable character in itself. Wasted PET products can cause serious environmental problems. Many countries around the world impose environmental legal restrictions over their abandonments. Many researches on the enviromental influence factors and treatment techniques of the wasted PET have been carried out. The main objective of this study is to develop a new sizing agent using recycling PET and improve its internal sizing effect. Dried powder of PET was used to make the modified PET. After extracting water-dispersible PET by subcritical hydrolysis, polyester resins have been extracted and triphenyl phosphate(TPP) has been added to obtain optimal internal sizing agent. It was found that the optimum dosage of TPP was 2% (per PET weight) and the hydrolysis temperature was independent on making the modified PET.

Failure Mechanism of Cu/PET Flexible Composite Film with Anisotropic Interface Nanostructure

  • Park, Sang Jin;Han, Jun Hyun
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.105-110
    • /
    • 2020
  • Cu/PET composite films are widely used in a variety of wearable electronics. Lifetime of the electronics is determined by adhesion between the Cu film and the PET substrate. The formation of an anisotropic nanostructure on the PET surface by surface modification can enhance Cu/PET interfacial adhesion. The shape and size of the anisotropic nanostructures of the PET surface can be controlled by varying the surface modification conditions. In this work, the effect of Cu/PET interface nanostructures on the failure mechanism of a Cu/PET flexible composite film is studied. From observation of the morphologies of the anisotropic nanostructures on plasma-treated PET surfaces, and cross-sections and surfaces of the fractured specimens, the Cu/PET interface area and nanostructure width are analyzed and the failure mechanism of the Cu/PET film is investigated. It is found that the failure mechanism of the Cu/PET flexible composite film depends on the shape and size of the plasmatreated PET surface nanostructures. Cu/PET interface nanostructures with maximal peel strength exhibit multiple craze-crack propagation behavior, while smaller or larger interface nanostructures exhibit single-path craze-crack propagation behavior.

Development of High-strength Polyethylene Terephthalate (PET) Sheet Through Low Melting Point Binder Compounding and Compression Process (저 융점 바인더 복합화 및 압착공정을 통한 고강도 폴리에틸렌 테레프탈레이트(PET) 시트 개발)

  • Moon, Jai Joung;Park, Ok-Kyung;Kim, Nam Hoon
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.282-287
    • /
    • 2020
  • In the present study, a high-strength polyethylene terephthalate (PET) sheet was fabricated through a densification process of low melting PET fiber (LMF) combined PET sheet. During the thermal heat treatment process of the combined LMF, individual PET fiber was connected, which in turn leads to the improvement of the interfacial bonding force between the fibers. Also, the densification of the PET sheet leads to reduce macrospore density and in return could enhance the binding force between the overlapped PET networks. Consequently, the asprepared LMF-PET sheet showed about 410% improved tensile strength and the same elongation compared to before compression. Besides, the enhanced bonding force can prevent the shrinkage of the PET fiber network and exhibited excellent dimensional stability.