• Title/Summary/Keyword: pesticide residue limit

Search Result 177, Processing Time 0.027 seconds

Development of a Residue Analysis Method for Metamifop in Paddy Water, Soil, and Rice with HPLC (HPLC를 이용한 농업용수, 논토양, 및 현미 중 metamifop의 잔류분석법 개발)

  • Park, Hee-Woon;Moon, Joon-Kwan
    • The Korean Journal of Pesticide Science
    • /
    • v.21 no.1
    • /
    • pp.68-74
    • /
    • 2017
  • An analytical method for detecting metamifop residue in paddy water, soil, and rice with high performance liquid chromatography (HPLC) was developed. Water was extracted with ethyl acetate before analyzing by HPLC. Soil residues were extracted with acetone under acidic condition and after purifying with $Extrelut^{(R)}$ NT, and silica SPE, the residue was analyzed by HPLC. For residue analysis in rice, the procedure involved extraction with acetone, purification with $Extrelut^{(R)}$ NT, partitioning between acetonitrile/hexane, purification with silica SPE cartridge, and analysis by HPLC. The limit of detection (LOD) was 1.0 ng, limit of quantitation (LOQ) was 3.0 ng, and method limit of quantitation (MLOQ) were 0.001 mg/L for paddy water, 0.01 mg/kg for rice and soil, respectively. Standard calibration curve shows linearity from 0.05 mg/kg to 5.0 mg/kg ($R^2=0.9999$). The recoveries in fortified paddy water were $91.3{\pm}3.5%$ (0.01 mg/L level) and $93.2{\pm}6.3%$ (0.05 mg/L level). The recoveries in fortified paddy soils were $92.5{\pm}4.0%$ (0.1 mg/kg level) and $92.7{\pm}4.0%$ (0.5 mg/kg level) in soil A, while, $102.3{\pm}4.4%$ (0.1 mg/kg level) and $98.9{\pm}7.9%$ (0.5 mg/kg level) in soil B, respectively. The recoveries in fortified rice were $93.0{\pm}6.9%$ (0.1 mg/kg level) and $85.0{\pm}3.5%$ (0.5 mg/kg level). This method was proved to be effective and can be used to determine the metamifop residue in paddy water, paddy soil, and rice.

A Study on the Risk Assessment of Pesticide Residues of Agricultural to Ensure Military Food Safety (군 식품 안전성 확보를 위한 농산물 잔류농약 위해도 평가 연구)

  • Cho, Sung-Yong;Seo, Jun-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.137-143
    • /
    • 2020
  • To ensure safety of raw materials for military foods, hazard assessment and monitoring of residual pesticides was conducted on agricultural products consumed by 9 companies based in Gyeongin and Gangwon. Residual pesticides were analyzed for 142 different products, by applying the multi-species pesticide polycomponent analysis method. Of the 36 samples analyzed, residual pesticides were detected in 7 samples, representing a detection rate of 19.4%. One particular pesticide residue was detected in peanuts, green onions, and red pepper powder, and 20 types of pesticide residues were detected in red pepper powder used in combat foods. However, all residues were found to be below the permissible level. Moreover, the hazard assessment results for Cypermethrin, Tebuconazole and EPN showed the highest concentration among the residual pesticides detected. Since the estimated intake was less than 100% as compared to the ingestion limit, it was considered to be safe. I have suggested the edit as per my understanding. Please review for accuracy, and revise appropriately if required. This is the first pesticide Risk Assessment study encompassing military requirements. Considering the results, we expect further application research, including research on reducing hazardous materials.

A Safety Survey on Pesticide Residues in Tropical Fruits Depending on Implementation of Positive List System (Positive List System 도입에 따른 열대과일류의 잔류농약 안전성 조사)

  • Kang, Hyang-Ri;Park, Yong-Bae;Do, Yung-Suk;Jeong, Jin-A;Lee, Seong-Bong;Cho, Sang-Hun;Lee, Hyo-Kyung;Son, Ji-Hee;Lee, Mi-Kyoung;Lee, Byoung-Hoon;Park, Jin-Hee;Yoon, Mi-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.4
    • /
    • pp.310-315
    • /
    • 2018
  • Under the "Positive List System (PLS)," a uniform limit of 0.01 mg/kg is applied if the agricultural product does not have a Maximum Residue Limit (MRL) for a pesticide. The purpose of this research is to conduct residual pesticide monitoring on tropical fruits distributed in Gyeonggi-do to investigate the effects of PLS and provide basic materials for establishing MRLs of residual pesticides for tropical fruits produced in Korea. By inspecting 120 tropical fruits distributed in Gyeonggi-do according to Multi-class pesticide multi-residue methods, we detected sevenfruits from threekinds of banana, mangoes, and kiwis with six different residual pesticides. Azoxystrobin and chlorpyrifos were detected from bananas, chlorfenapyr from mangoes, and chlorothalonil, iprodione, and procymidone from kiwis. A single case of chlorfenapyr and chlorothalonil was found with a mango and a kiwi produced in Korea, respectively, and by applying PLS we found that they exceeded the MRL of residual pesticide. Thus, it is necessary to set the MRL of residual pesticides for tropical fruits produced in Korea.

Analytical Method of Bentazone Residue in Agricultural Commodities Using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 bentazone의 분석법 확립)

  • Kim, Young-Hak;Lee, Su-Jin;Song, Lee-Seul;Hwang, Young-Sun;Lee, Young-Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.2
    • /
    • pp.149-159
    • /
    • 2011
  • Bentazone is benzothiadiazole group herbicide, and used to foliage treatment. This herbicide have already been widely used for cereals and vegetables planting in worldwide. This experiment was conducted to establish a determination method for bentazone residue in crops using HPLC-UVD/MS. Bentazone residue was extracted with acetone (adjusted pH 1 with phosphoric acid) from representative samples of five raw products which comprised hulled rice, soybean, apple, green pepper, and Chinese cabbage. The extract was diluted with saline water, and dichloromethane partition was followed to recover bentazone from the aqueous phase. Florisil column chromatography was additionally employed for final clean up of the extract. The bentazone was quantitated by HPLC with UVD, using a YMC ODS AM 303 ($4.6{\times}250$ mm) column. The crops were fortified with bentazone at 3 levels per crop. Mean recovery ratio were ranged from 82.0% for a 0.2 mg/kg in apple to 97.9% for a 0.02 mg/kg in Chinese cabbage. The coefficients of variation were ranged from 0.5% for a 0.02 mg/kg in soybean to 9.7% for a 0.02 mg/kg in Chinese cabbage. Quantitative limit of bentazone was 0.02 mg/kg in representative five crop samples. A LC/MS with selected-ion monitoring was also provided to confirm the suspected residue. Therefore, this analytical method was reproducible and sensitive enough to determine the residue of bentazone in agricultural commodities.

Sensing of the Insecticide Carbofuran Residues by Surface Plasmon Resonance and Immunoassay (표면플라즈몬공명과 효소면역분석법을 이용한 살충제 카보후란 잔류물 검출)

  • Yang G. M.;Cho N. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.333-339
    • /
    • 2005
  • The pesticide is raising public interest in the world, because it causes damage to an environmental pollution and the human health remaining agricultural products and an ecosystem, in spite of the advantages. Particularly, each country restricts the residual pesticide and induces observance about the safety and usage standard so that they can control the amount of pesticide used and defend the safety of agricultural products. The habitual practice for the analysis of the residual pesticide depends on GC (gas chromatography), HPLC (high performance liquid chromatography) and GC/MS (gas chromatography/mass spectroscopy), which triturate the fixed quantity of samples, abstract and purify as a suitable organic solvent. These methods have the highly efficient in aspects of sensitivity and accuracy. On the other hand, they need the high cost, time consuming, much effort, expensive equipment and the skillful management. Carbofuran is highly toxic by inhalation and ingestion and moderately toxic by dermal absorption. As with other carbamate compounds, it is metabolized in the liver and eventually excreted in the urine. The half-life of carbofuran on crops is about 4 days when applied to roots, and longer than 4 days if applied to the leaves. This research was conducted to develop immunoassay for detecting carbofuran residue quickly on the basis of surface plasmon resonance and to evaluate the measurement sensitivity. Gold chip used was CM5 spreaded dextran on the surface. An applied antibody to Immunoassay was GST (glutathione-s-transferase). The association and the dissociation time were 176 second and 215 second between GST and carbofuran. The total analysis time using surface plasmon resonance was 13 minutes including regeneration time, on the other hand HPLC and GC/MS was 2 hours usually. The minimum detection limit of a permissible amount for carbofuran in the country is 0.1 ppm. The immunoassay method using surface plasmon resonance was 0.002 ppm.

Probabilistic exposure assessment, a risk-based sampling plan and food safety performance evaluation of common vegetables (tomato and brinjal) in Bangladesh

  • Mazumder, Mohammad Nurun-Nabi;Bo, Aung Bo;Shin, Seung Chul;Jacxsens, Liesbeth;Akter, Tahmina;Bir, Md. Shahidul Haque;Aktar, Most Mohshina;Rahman, Md. Habibur;WeiQiang, Jia;Park, Kee Woong
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.1
    • /
    • pp.33-43
    • /
    • 2021
  • Along with the widespread use of pesticides in the world, concerns over human health impacts are rapidly growing. There is a large body of evidence on the relationship between the exposure to pesticides and the elevated rate of chronic diseases such as different types of cancers, diabetes, neurodegenerative disorders like Parkinson, Alzheimer, and amyotrophic lateral sclerosis (ALS), birth defects, and reproductive disorders. This research assessed the health risk of pesticide residues by the dietary intake of vegetables collected from the agro-based markets of Dhaka, Bangladesh. As some of the banned pesticides were also found in vegetable samples, they may pose a higher risk because of cheaper availability and hence the government of Bangladesh should take strong measures to control these banned pesticides. Five organo phosphorus (chlorpyrifos, parathion, ethion, acephate, fenthion) and two carbamate (carbaryl and carbofuran) pesticide residues were identified in twenty four samples of two common vegetables (tomato and brinjal). The pesticide residues ranged from below a detectable limit (< 0.01) to 0.36 mg·kg-1. Acephate, chlorpyrifos, ethion, and carbaryl were detected in only one sample, while co-occurrence occurred twice for parathion. Continuous monitoring and strict regulation should be enforced regarding the control of pesticide residues in fresh vegetables and other food commodities in Bangladesh.

Establishment of Pre-Harvest Residue Limit (PHRL) of Fungicides Azoxystrobin and Difenoconazole on Prunus mume fruits (매실 중 살균제 azoxystrobin과 difenoconazole의 생산단계 잔류허용기준 설정)

  • Lee, Dong Yeol;Kim, Yeong Jin;Park, Min Ho;Lee, Seung Hwa;Kim, Sang Gon;Kang, Nam Jun;Kang, Kyu Young
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.307-313
    • /
    • 2013
  • This study was carried out to investigate the residual characteristics of fungicide azoxystrobin and difenoconazole in Prunus mume fruits, and establish pre-harvest residue limits (PHRL) based on dissipation and biological half-lives of fungicide residues. The fungicides were sprayed onto the crop at recommended dosage once and 3 times in 7 days interval, respectively. The samples were harvested at 0, 1, 2, 4, 6, 8, 10, 12 and 14 days after treatment. These residual pesticides were extracted with QuEChERS method, clean-up with $NH_2$ SPE cartridge, and residues were analyzed by HPLC/DAD and GLC/ECD, respectively. Method quantitative limits (MQL) of azoxystrobin were 0.03 mg $kg^{-1}$ and of difenoconazole were 0.006 mg $kg^{-1}$. Average recovery were $93.2{\pm}2.49%$, $85.5{\pm}1.97%$ for azoxystrobin at fortification levels at 0.3 and 1.5 mg $kg^{-1}$, and $100.8{\pm}6.74%$, $87.6{\pm}9.92%$ for difenoconazole at fortification levels at 0.06 and 0.3 mg $kg^{-1}$, respectively. The biological half-lives of azoxystrobin were 5.9 and 5.2 days at recommended dosage once and 3 times in 7 days interval, respectively. The biological half-lives of difenoconazole were 9.3 and 8.0 days at recommended dosage once and 3 times in 7 days interval, respectively. The PHRL of azoxystrobin and difenoconazole were recommended as 5.32 and 1.64 mg $kg^{-1}$ for 10 days before harvest, respectively.

Development of an Official Analytical Method for Determination of Phorate and its Metabolites in Livestock Using LC-MS/MS (LC-MS/MS를 이용한 축산물 중 Phorate 및 대사산물 5종 동시분석법 개발)

  • Ko, Ah-Young;Kim, Heejung;Jang, Jin;Lee, Eun Hyang;Ju, Yunji;Noh, Mijung;Kim, Seongcheol;Park, Sung-Won;Chang, Moon-Ik;Rhee, Gyu-Seek
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.3
    • /
    • pp.272-280
    • /
    • 2015
  • A simultaneous official method was developed for the determination of phorate and its metabolites (phorate sulfoxide, phorate sulfone, phorate oxon, phorate oxon sulfoxide, phorate oxon sulfone) in livestock samples. The analytes were quantified and confirmed via liquid chromatograph-tandem mass spectrometer (LC-MS/MS) in positive ion mode using multiple reaction monitoring (MRM). Phorate and its metabolites were extracted from beef and milk samples with acidified acetonitrile (containing 1% acetic acid) and partitioned with anhydrous magnesium sulfate. Then, the extract was purified through primary secondary amine (PSA) and C18 dispersive sorbent. Matrix matched calibration curves were linear over the calibration ranges (0.005-0.5 mg/L) for all the analytes into blank extract with $r^2$ > 0.996. For validation purposes, recovery studies were carried out at three different concentration levels (beef 0.004, 0.04 and 0.2 mg/kg; milk 0.008, 0.04 and 0.2 mg/kg, n = 5). The recoveries were within 79.2-113.9% with relative standard deviations (RSDs) less than 19.2% for all analytes. All values were consistent with the criteria ranges requested in the Codex guidelines. The limit of quantification was quite lower than the maximum residue limit (MRL) set by the Ministry of Food and Drug Safety (0.05 mg/kg). The proposed analytical method was accurate, effective and sensitive for phorate and its metabolites determination and it will be used to as an official analytical method in Korea.

Analysis of pesticide residues on sweet persimmon harvested from systemized orchards for exporting to USA (대미수출을 위한 병해충 방제 체계 적용 농약살포 단감원에서 수확한 단감의 잔류 농약량 조사)

  • Kim, Young-Sub;Choo, Ho-Yul;Park, Chung-Gyoo;Lee, Dong-Woon
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.2
    • /
    • pp.166-172
    • /
    • 2005
  • Temporary control schedules were tested at sweet persimmon orchards to development new control programs to meet the quarantine requirements of USA in 2002. The 'USA export-type control orchards' were spayed with pesticides (azoxystrobin, carbaryl, cyhexatin, fenarimol, mancozeb, methoxyfenozide, spinosad and trifluxistrobin) which were possibly adaptable to the poem trees in USA. Pesticide residues in the sweet persimmon fruits harvested from USA export-type control orchards were analyzed. Azoxystrobin, mancozeb, trifloxystrobin, spinosad, carbaryl, and cyhexatin were not detected by the experimental methods. The residues of fenarimol and methoxyfenozide in sweet persimmon of USA export-type control orchards were 0.016-0.020 ppm and 0.022-0.029 ppm, respectively. These levels are quite below the maximum residue limit level of USA (below 0.1 ppm in fenarimol and 7 ppm in methoxyfenozide). These results suggest that new control programs could be developed by modifying the USA export-type control schedule tested in this study to meet the quarantine requirements of USA, if we could suppress the damage of plant bugs.

The Behaviour of Residues of Flonicamid and Metabolites in Sweet peppers (착색단고추 중 플로니카미드 및 그 대사산물의 잔류특성)

  • Son, Kyeong-Ae;Kwon, Hyeyoung;Jin, Yong-Duk;Park, Byeong Jun;Kim, Jinba;Park, Jung-Hwon;Kim, Taek-Kyum;Im, Geon-Jae;Lee, Key-Woon
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.3
    • /
    • pp.145-154
    • /
    • 2013
  • Flonicamid was a water-soluble and systemic insecticide. It was applied to control neonicotinod pesticide-resistant cotton aphid in sweet peppers. However, the residue levels of total flonicamid in sweet pepper exported to Japan in 2009 were exceeded the maximum residue limit (MRL). This study was conducted to elucidate residual properties of flonicamid parent compound and its metabolites in sweet peppers. It was carried out to compare the variation of residues in sweet pepper in three different greenhouses for 21 days after 3 times application with 7 days interval. The mean residues were 0.176, 0.152 and 0.108 mg $kg^{-1}$ and the residue levels in sweet pepper among three greenhouses show significant difference. The maximum residue levels were detected 10 days later after last treatments. The overall residue levels were lower than MRL 2.0 mg $kg^{-1}$ (by Korea) and 0.4 mg $kg^{-1}$ (by Japan in 2009 but now revised MRL is 2.0 mg $kg^{-1}$). But the residue level of total flonicamid at the 21th day after 3 times treatment with 7 days interval was 0.429 mg $kg^{-1}$ restricted by the application of double rate than recommended rate. The amounts of metabolites, TFNA, 4-Trifluoro methyl nicotinic acid and TFNG, N-(4-trifluoro methyl nicotinoyl) glycine were increased while flonicamid parent compound was decreased over time. Therefore the longer trial period should be needed for flonicamid in sweet peppers.