• Title/Summary/Keyword: pesticide detection

Search Result 274, Processing Time 0.03 seconds

Detection of Multi-class Pesticide Residues Using Surface Plasmon Resonance Based on Polyclonal Antibody

  • Yang, Gil-Mo;Kang, Suk-Won
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.547-552
    • /
    • 2008
  • The detection of carbamate (carbofuran, carbaryl, benfracarb, thiodicarb, and methomil) and organophosphate (diazinon, cadusafos, ethoprofos, parathion-methyl, and chlorpyrifos) pesticide residues with very low detection limits was carried out using surface plasmon resonance (SPR) based equipment. The capacity to develop a portable SPR biosensor for food safety was also investigated. The applied ligand for the immunoassays was polyclonal goat anti-rabbit immunoglobulin (IgG) peroxidase conjugate. Concentration tests using direct binding assays showed the possibility of quantitative analysis. For ligand fishing to find a proper antibody to respond to each pesticide, acetylcholinesterase (AChE), and glutathione-S-transferase (GST) were tested. The reproducibility and precision of SPR measurements were evaluated. With this approach, the limit of detection for pesticide residues was 1 ng/mL and analysis took less than 11 min. Thus, it was demonstrated that detecting multi-class pesticide residues using SPR and IgG antibodies provides enough sensitivity and speed for use in portable SPR biosensors.

Development of Colorimetric Paper Sensor for Pesticide Detection Using Competitive-inhibiting Reaction

  • Kim, Hyeok Jung;Kim, Yeji;Park, Su Jung;Kwon, Chanho;Noh, Hyeran
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.326-331
    • /
    • 2018
  • Contamination by pesticides is an everincreasing problem associated with fields of environmental management and healthcare. Accordingly, appropriate treatments are in demand. Pesticide detection methods have been researched extensively, aimed at making the detection convenient, fast, cost-effective, and easy to use. Among the various detecting strategies, paper-based assay is potent for real-time pesticide sensing due to its unique advantages including disposability, light weight, and low cost. In this study, a paper-based sensor for chlorpyrifos, an organophosphate pesticide, has been developed by layering three sheets of patterned plates. In colorimetric quantification of pesticides, the blue color produced by the interaction between acetylcholinesterase and indoxyl acetate is inhibited by the pesticide molecules present in the sample solutions. With the optimized paper-based sensor, the pesticide is sensitively detected (limit of detection =8.60 ppm) within 5min. Furthermore, the shelf life of the device is enhanced to 14 days after from the fabrication, by treating trehalose solution onto the deposited reagents. We expect the paper-based device to be utilized as a first-screening analytic device for water quality monitoring and food analysis.

MEASUREMENT OF PESTICIDES RESIDUES USING SPECTROSCOPY ON AGRICULTURAL PRODUCTS

  • Kim, Y. W.;S. H. Noh
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.525-532
    • /
    • 2000
  • A new spectroscopic method for pesticide residues detection on agricultural products was developed. The general determination methods are high performance liquid chromatography (HPLC), gas chromatography (GC) or GC-mass spectrometry. They have provided relatively good detection limit and accuracy with complicated and time-consuming (5hrs above) procedures. In addition freshness is very important for evaluating qualities of agricultural products. This requires a simple and fast method for detection of pesticides. Reflectance, transmittance and fluorescence spectrometry of pesticides were tested using UV range because most of pesticides contain conjugation band in the molecular structures. Fluorescence spectrometry showed better sensitive to detect pesticide residues than did reflectance and transmittance spectrometry. Intensity and shape of fluorescence spectra showed different patterns with different structures of pesticides. Detection limit for fluorescence spectrometry was 0.1 ppm to 10 ppm depending on the structures of pesticides. Application of fluorescence spectrometry appears to be an easy method for detection of pesticide residues on agricultural products.

  • PDF

A Study on the Pesticide Residues Monitoring of Medicinal Herbs which has marketed in the Daejeon (대전 지역 유통 식용 한약재의 잔류농약 실태 연구)

  • Kim, Kyoung-Shin;Kim, Sung Gu;Lim, Jae Yeun;Kim, Byoung-Soo
    • Journal of Haehwa Medicine
    • /
    • v.22 no.1
    • /
    • pp.129-143
    • /
    • 2013
  • This study was conducted to investigate the residue amount of pesticide on the 41 medicinal herbs in Daejeon area. This study was carried out to monitor the current status of pesticide residues in commercial medicinal herbs for sale of food use in 2012. It was performed using GC/ECD, GC/NPD, HPLC to analyze pesticides residues. Residues of 283 pesticides were analyzed by a simultaneous multiresidue method in 41 medicinal herbs being on sale in Daejeon. The medicinal herbs detected pesticides in 10 of 41 cases, showed a detection rate of 24.39%. The medicinal herbs which exceed the maximum residue limit were five cases as Cnidii Rhizoma, Osterici Radix, Artemisiae Capillaris Herba, Zizyphi Fructus and Alismatis Rhizoma. And pesticide residue of Cnidii Rhizoma and Alismatis Rhizoma exceeds the limit standard presented in only medicine use of KFDA. The residual pesticides which had the high detection rate were Chlopyrifos, Tebuconazole and Endosulfan in the detection of medicinal herbs. For further research, standards of Pesticide Residues in medicinal herbs should be added and more research of pesticide residues in medicinal herbs required. And standards of pesticide residues in medicinal herbs should be applied equally as medicines and food.

Development of an Acetylcholinesterase-Based Detection Kit for the Determination of Organophosphorus and Carbamate Pesticide Residues in Agricultural Samples

  • Kim, Bo-Mee;El-Aty, A.M.Abd;Hwang, Tay-Eak;Jin, Li-Tai;Kim, Young-Sig;Shim, Jae-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.929-935
    • /
    • 2007
  • The objective of this study was to develop a rapid, simple, and qualitative acetylcholinesterase (AChE)- detection kit, based on a modification of the Ellman and ELISA methods, for the detection of organophosphorus (OP) and carbamate (CB) pesticide. The developed kits were used to screen a large number of agricultural samples (spiked and real) for OP and CB pesticide residues. AChE was extracted from the heads of honeybees (Apis mellifera L.) using Triton X-100, and was purified through 3 steps: diethylaminoethylcellulose chromatography (DEAE), affinity chromatography and membrane filtering, and Mono-Q column chromatography. Epoxy-activated Sepharose 6B affinity chromatography was used for large-scale purification. The presence of OP and CB pesticide residues in agricultural samples was assayed on the basis of AchE inhibition value. The presence (6 bands) or absence of some colored bands on the test line indicated a negative or positive result, respectively. The limits of detection for measured organophosphorus (OP) and carbamates (CB) pesticide residues in standard pesticide solutions and fortified samples were ranged from 0.50 to 2.50 ppm and 0.50 to 4.75 ppm, respectively.

Detection of Pesticide Thiram in Plant Leafs Using Voltammetric at Nanotube Electrode (나노튜브전극을 사용한 전압전류법에 의한 식물잎에서 살충제 검출)

  • Lee, Chang-Hyun;Ly, Suw-Young
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1335-1341
    • /
    • 2010
  • Voltammetric diagnostics of pesticide thiram was studied in plant leafs in vivo fluid with DNA immobilized on a carbon nanotube electrode (DCE). Sensor properties of carbon nanotube (CE) and DNA immobilized nanotube were compared. DCE was more effective than CE in target detecting. The parameters such as pH strength, stripping accumulation, amplitude, and increment potential were examined to find the optimum condition for detection of pesticide thiram in a sesame leaf. The optimized conditions were as follows 550 Hz frequency, 0.15 V amplitude, 0.005 V increment potential, -1.2 V initial potential, 4.78 pH, 500 sec accumulation time. Under optimum condition, the detection limit of thiram was attained at 0.01ng/L.

Microbial Floral Dynamics of Chinese Traditional Soybean Paste (Doujiang) and Commercial Soybean Paste

  • Gao, Xiuzhi;Liu, Hui;Yi, Xinxin;Liu, Yiqian;Wang, Xiaodong;Xu, Wensheng;Tong, Qigen;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1717-1725
    • /
    • 2013
  • Traditional soybean paste from Shandong Liangshan and Tianyuan Jiangyuan commercial soybean paste were chosen for analysis and comparison of their bacterial and fungal dynamics using denaturing gel gradient electrophoresis and 16S rRNA gene clone libraries. The bacterial diversity results showed that more than 20 types of bacteria were present in traditional Shandong soybean paste during its fermentation process, whereas only six types of bacteria were present in the commercial soybean paste. The predominant bacteria in the Shandong soybean paste were most closely related to Leuconostoc spp., an uncultured bacterium, Lactococcus lactis, Bacillus licheniformis, Bacillus spp., and Citrobacter freundii. The predominant bacteria in the Tianyuan Jiangyuan soybean paste were most closely related to an uncultured bacterium, Bacillus licheniformis, and an uncultured Leuconostoc spp. The fungal diversity results showed that 10 types of fungi were present in the Shandong soybean paste during the fermentation process, with the predominant fungi being most closely related to Geotrichum spp., an uncultured fungal clone, Aspergillus oryzae, and yeast species. The predominant fungus in the commercial soybean paste was Aspergillus oryzae.

Monitoring of Carbamate Pesticide Residues in Agricultural Products Supplied for the Army (군납 농산물 중 카바메이트계 농약의 모니터링)

  • Park, Jong-Ko;Na, Jk-Ju
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.266-271
    • /
    • 2006
  • This study was monitored for 14 pesticide residues in agricultural products for the army, such as fruit vegetables(pepper, cucumber, pumpkin, melon and water melon), leafy vegetables(Korean cabbage, spinach, lettuce, crown daisy, cabbage, green onion), mushrooms(agaric, p'yogo), and bean sprouts produced in Kyunggi-do and Inchon-City. From January to December 2005, ten carbamate pesticides in 356 samples were analyzed by HPLC. One kind of pesticide was detected in 8 samples of detection rate (2.53%), and two pesticides were in one sample of detection rate(0.27%). Aldicarb, bendiocarb, fenobucarb, methiocarb, isoprocarb, and propoxur were not found in all samples. Detection rates of pesticides were 0.84% for methomyl, 0.56% for carbofuran, 0.56% for ethiofencarb, and 0.28% for carbayl. Dectection ranges of pesticides were from 0.01 to 2.9 mg/kg for ethiofencarb, from 0.1 to 0.23 mg/kg for methomyl, from 0.20 to 0.24 mg/kg for carbofuran, and 0.01 mg/kg for carbaryl, respectively. Consequently, detection levels of all pesticides in samples were less than the maximum residue limits(MRLs) in Korea representing that all agricultural products for the army were safe.

Pesticide Residue Monitoring and Environmental Exposure in Paddy Field Soils and Greenhouse Soils (전국 논토양과 시설하우스 토양 중 잔류농약 모니터링과 환경 노출성)

  • Park, Byung-Jun;Lee, Ji-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.2
    • /
    • pp.134-139
    • /
    • 2011
  • To investigate an amount of pesticide residue in rice paddy field soils and greenhouse soil, this monitoring was carried out pesticide detection frequency and concentrations collected samples from 150 rice paddy field soils and 152 greenhouse soils of nationwide in the year of 2007, and 2008, respectively. The detection limit of pesticides of this experiment were ranged 0.001~0.005 ppm. In 2007, One hundred fifty samples were collected from rice paddy field soils in April and monitored for 120 wide-used pesticides. A total of 11 pesticides were detected four fungicides, four insecticides and three herbicides in paddy field soils. The highest concentration levels of pesticide detected were 0.84 ppm as herbicide oxadiazon, 0.81 ppm as fungicide isoprothiolane and 0.50 ppm as insecticide buprofezin. The detection frequencies range were 0~19.3%, and the frequency was 2.7% as isoprothiolane and 19.3% as oxadiazon in paddy field soils. In 2008, One hundred fifty two samples were collected from greenhouse soils in April and monitored for 120 wide-used pesticides. A total of 29 pesticides were detected six fungicides, sixteen insecticides and seven herbicides in greenhouse soils. high concentration levels of pesticide detected levels were 5.09 ppm as insecticide chlorfenapyr, 2.57 ppm as fungicide chlorothalonil and 0.72 ppm as herbicide oxadiazon. The detection frequencies range were 0~38.8%, and high frequencies were 38.8% as insecticide endosulfan, 13.2% as oxadiazone, 10.5% as fungicide hexaconazole and 7.2% as isoprothiolane in greenhouse soils, Total endosulfan and oxadiazon were showed high detection frequency of 38.8% and 13.2%, respectively.

Residual characteristics of pesticide in banana from international pesticide residue monitoring data (각국의 잔류농약 모니터링 자료를 활용한 바나나 중 농약 잔류 실태 조사)

  • Kim, Seo-Hong;Kim, Jeong-Ah;Im, Moo-Hyeog
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.1
    • /
    • pp.9-22
    • /
    • 2020
  • This study was designed to use the safety management data for residual pesticides in imported banana based on the investigation of pesticide residue detection of agricultural products with different origins in the Republic of Korea. From the USA, EU, UK, Japan and Korea from 2007 to 2018, the results of banana residue pesticides were summarized into detected pesticides, number of inspections, number of pesticide detection cases, and the amount of detected pesticide residue. A total of 109 pesticides were detected for the pesticide residue and pesticide detection rate was 4.58% in 206,894 cases. The detection rate was ranged within 10.62-24.62% for chlorpyrifos, imazalil, methyl-bromide, azoxystrobin, carbendazim, pretilachlor and thiabendazole. Among them, chlorpyrifos was detected most often followed by imazalil, azoxystrobin, thiabendazole, bifenthrin and carbendazim. According to the results of monitoring data for bananas in EU, Japan, USA, UK and Korea, the kinds of detected pesticides were 85, 57, 23, 18 and 8, respectively. Azoxystrobin, bifenthrin and chloropyrifos were found in monitoring data of all countries. Fourteen and twelve pesticides were detected in bananas from Costa Rica and Ecuador, respectively. Imazalil and thiabendazole were detected in 16 and 11 origins, respectively. Myclobutanil and iprodione were detected in four and two countries, respectively. In bananas from Costa Rica, azoxystrobin and bifenthrin were detected 11.8 and 9.8%, respectively, and the detection rate of azoxystrobin was 19% in bananas from Colombia. Chlorpyrifos was detected 22.7, 13.3 and 10.8% in bananas from Belize, Colombia and Costa Rica respectively. Myclobutanil was detected in bananas from Colombia and Costa Rica with the rate of 17.9 and 10.4%, respectively.