• Title/Summary/Keyword: perturbation solution

Search Result 244, Processing Time 0.027 seconds

Torsion of circular open cross-section with corrugated inner and outer surface

  • Pala, Yasar;Pala, Abdullah
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.75-82
    • /
    • 2020
  • In this study, the problem of torsion of bars with open cross section surrounded by corrugated boundaries is analyzed. An approximate analytical solution is given using perturbation technique. First, the stress analysis for circular open cross-section for arbitrary opening angle is formulated and the problem is analytically solved. Second, the open cross-section with corrugated cross section is analyzed using perturbation method. First order contributions to the stresses and the torques have been added. The results have been exemplified and compared by considering special examples.

Analytical study of nonlinear vibration of oscillators with damping

  • Bayat, Mahmoud;Bayat, Mahdi;Pakar, Iman
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.221-232
    • /
    • 2015
  • In this study, Homotopy Perturbation Method (HPM) is used to solve the nonlinear oscillators with damping. We have considered two strong nonlinear equations to show the application of the method. The Runge-Kutta's algorithm is used to obtain the numerical solution for the problems. The method works very well for the whole range of initial amplitudes and does not demand small perturbation and also sufficiently accurate to both linear and nonlinear physics and engineering problems. Finally to show the accuracy of the HPM, the results have been shown graphically and compared with the numerical solution.

Updating finite element model using dynamic perturbation method and regularization algorithm

  • Chen, Hua-Peng;Huang, Tian-Li
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.427-442
    • /
    • 2012
  • An effective approach for updating finite element model is presented which can provide reliable estimates for structural updating parameters from identified operational modal data. On the basis of the dynamic perturbation method, an exact relationship between the perturbation of structural parameters such as stiffness change and the modal properties of the tested structure is developed. An iterative solution procedure is then provided to solve for the structural updating parameters that characterise the modifications of structural parameters at element level, giving optimised solutions in the least squares sense without requiring an optimisation method. A regularization algorithm based on the Tikhonov solution incorporating the generalised cross-validation method is employed to reduce the influence of measurement errors in vibration modal data and then to produce stable and reasonable solutions for the structural updating parameters. The Canton Tower benchmark problem established by the Hong Kong Polytechnic University is employed to demonstrate the effectiveness and applicability of the proposed model updating technique. The results from the benchmark problem studies show that the proposed technique can successfully adjust the reduced finite element model of the structure using only limited number of frequencies identified from the recorded ambient vibration measurements.

On a Stability Region of Liner Time-Varying Systems (선형시변 시스템의 안정도 영역에 관하여)

  • 최종호;장태정
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.7
    • /
    • pp.484-489
    • /
    • 1988
  • Sufficient conditions concerning the perturbation region of system parameters, which guarantee the asymptotic stability of linear time- varying systems, are presented. These conditions are obtained by Lyapunov function approach for continuous-time and discrete-time systems. Also, a computational algorithm using nonlinear programming is proposed for finding the maximum perturbation region which satisfies the sufficient condition for the continuous-time systems. The technique of finding the solution for the continuous-time systems can also be applied to the discrete-time systems. In the continuous-time case, it is shown by an example that the method proposed in this paper yields much larger perturbation region of parameters than other previously reported results. An example of the perturbation region of system paramters for the discrete-time system is also given.

  • PDF

Perturbation Analysis of Stokes Flow in Porous Medium (다공성 매질의 내부유동에 관한 섭동해석)

  • Seong, Kwanjae
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.393-397
    • /
    • 2005
  • In this study, flow in a porous medium is analyzed using a computer-extended perturbation series solution. The flow is modelled as a creeping flow in a periodically constricted channel. The channel walls have a sinusoidally varying width and the flow is analyzed in terms of its vorticity and stream functions in the Stokes flow regime. The perturbation series in terms of a small parameter, average width to length ratio, is extended with a computer resulting in purely asymptotic series and Pade summation is used to obtain final results. Resulting flow shows flow separations in the widening section and immobile zones in the widest section of the flow regime with reattachment in the narrowing section. Analysis of the flow separation phenomena resulted in a correlation between the two geometric parameters of the channel walls to predict the onset of flow separation in the Stokes flow regime.

A modified modal perturbation method for vibration characteristics of non-prismatic Timoshenko beams

  • Pan, Danguang;Chen, Genda;Lou, Menglin
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.689-703
    • /
    • 2011
  • A new perturbation method is introduced to study the undamped free vibration of a non-prismatic Timoshenko beam for its natural frequencies and vibration modes. For simplicity, the natural modes of vibration of its corresponding prismatic Euler-Bernoulli beam with the same length and boundary conditions are used as Ritz base functions with necessary modifications to account for shear strain in the Timoshenko beam. The new method can transform two coupled partial differential equations governing the transverse vibration of the non-prismatic Timoshenko beam into a set of nonlinear algebraic equations. It significantly simplifies the solution process and is applicable to non-prismatic beams with various boundary conditions. Three examples indicated that the new method is more accurate than the previous perturbation methods. It successfully takes into account the effect of shear deformation of Timoshenko beams particularly at the free end of cantilever structures.

Closed form solution for displacements of thick cylinders with varying thickness subjected to non-uniform internal pressure

  • Eipakchi, H.R.;Rahimi, G.H.;Esmaeilzadeh Khadem, S.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.731-748
    • /
    • 2003
  • In this paper a thick cylindrical shell with varying thickness which is subjected to static non-uniform internal pressure is analyzed. At first, equilibrium equations of the shell have been derived by the energy principle and by considering the first order theory of Mirsky-Herrmann which includes transverse shear deformation. Then the governing equations which are, a system of differential equations with varying coefficients have been solved analytically with the boundary layer technique of the perturbation theory. In spite of complexity of modeling the conditions near the boundaries, the method of this paper is very capable of providing a closed form solution even near the boundaries. Displacement predictions are in a good agreement with the calculated finite elements and other analytical results. The convergence of solution is very fast and the amount of calculations is less than the Frobenius method.

ON THE NONLINEAR MATRIX EQUATION $X+\sum_{i=1}^{m}A_i^*X^{-q}A_i=Q$(0<q≤1)

  • Yin, Xiaoyan;Wen, Ruiping;Fang, Liang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.739-763
    • /
    • 2014
  • In this paper, the nonlinear matrix equation $$X+\sum_{i=1}^{m}A_i^*X^{-q}A_i=Q(0<q{\leq}1)$$ is investigated. Some necessary conditions and sufficient conditions for the existence of positive definite solutions for the matrix equation are derived. Two iterative methods for the maximal positive definite solution are proposed. A perturbation estimate and an explicit expression for the condition number of the maximal positive definite solution are obtained. The theoretical results are illustrated by numerical examples.

CONDITION NUMBERS WITH THEIR CONDITION NUMBERS FOR THE WEIGHTED MOORE-PENROSE INVERSE AND THE WEIGHTED LEAST SQUARES SOLUTION

  • Kang Wenhua;Xiang Hua
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.95-112
    • /
    • 2006
  • In this paper, the authors investigate the condition number with their condition numbers for weighted Moore-Penrose inverse and weighted least squares solution of min /Ax - b/M, where A is a rank-deficient complex matrix in $C^{m{\times}n} $ and b a vector of length m in $C^m$, x a vector of length n in $C^n$. For the normwise condition number, the sensitivity of the relative condition number itself is studied, the componentwise perturbation is also investigated.

A Gradient DNA Coding for Searching Stable Solution (안정해 탐색을 위한 기울기 적용 DNA 코딩)

  • Lian, He-Song;Kim, In-Taek
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.238-245
    • /
    • 2003
  • This paper presents a novel method for searching stable solution using DNA coding scheme. Often there are more than one solutions that satisfy the system requirements. These solutions can be viewed as extremes in multimodal function. All extremes are not the same in that some of them are using sensitive to noise or perturbation. This paper address the method that selects a solution that meets the system requirements in terms of output performance and is tolerant to the perspective noise or perturbation. A new method, called a Gradient DNA coding is proposed to achieve such objectives several numerical examples and presented and comparing DNA coding with genetic algorithm is also given.