• Title/Summary/Keyword: perturbation analysis

Search Result 637, Processing Time 0.021 seconds

Dynamic Analysis of Floating Flexible Body Using Perturbation Method (섭동법을 이용한 부유 한성체의 동역학 해석)

  • Seong, Kwan-Jae;Kwak, Moon K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1354-1359
    • /
    • 2004
  • This paper is concerned with the application of perturbation method to the dynamic analysis of floating flexible body. In dealing with the dynamics of free-floating body, the rigid-body motions and elastic vibrations are analyzed separately. However, the rigid-body motions cause vibrations and elastic vibrations also affect rigid-body motions in turn, which indicates that the rigid-body motions and elastic vibrations are coupled in nature. The resulting equations of motion are hybrid and nonlinear. We can discretize the equations of motion by means of admissible functions but still we have to cope with nonlinear equations. In the previous paper, we proposed the use of perturbation method to the coupled equations of motion and derived zero-order and first-order equations of motion. The derivation process was lengthy and tedious. Hence, in this paper, we propose a new approach to the same problem by applying the perturbation method to the Lagrange's equations, thus providing a systematic approach to the addressed problem. Theoretical derivations show the efficacy of the proposed method.

Perturbation and Nonlinear Dynamic Analysis of Sustained Vowels in Normal and Pathological Voices

  • Lee, Ji-Yeoun;Choi, Seong-Hee;Jiang, Jack J.;Hahn, Min-Soo;Choi, Hong-Shik
    • Phonetics and Speech Sciences
    • /
    • v.2 no.1
    • /
    • pp.113-120
    • /
    • 2010
  • In this paper, we investigate the acoustic characteristics of sustained voices from normal subjects and patients with laryngeal pathologies. Perturbation methods (including jitter and shimmer), signal-to-noise ratio (SNR), and nonlinear dynamic methods (such as correlation dimension) are used to analyze normal and pathological voices. We find that jitter does not statistically discriminate between normal and pathological voices, but a significant difference is found for shimmer, SNR, and correlation dimension. The results suggest that nonlinear dynamic analysis may be valuable for the analysis of normal and pathological voices but perturbation analysis should be applied with caution for pathological voice analysis.

  • PDF

Eigenvalue Perturbation for Controller Parameter and Small Signal Stability Analysis of Large Scale Power Systems (제어기정수에 대한 고유치 PERTURBATION과 대규모 전력계통의 미소신호안정도 해석)

  • Shim, Kwan-Shik;Song, Sung-Gun;Moon, Chae-Ju;Lee, Ki-Young;Nam, Hae-Kon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.11
    • /
    • pp.577-584
    • /
    • 2002
  • This paper presents a novel approach based on eigenvalue perturbation of augmented matrix(AMEP) to estimate the eigenvalue for variation of controller parameter. AMEP is a useful tool in the analysis and design of large scale power systems containing many different types of exciters, governors and stabilizers. Also, it can be used to find possible sources of instability and to determine the most sensitivity parameters for low frequency oscillation modes. This paper describes the application results of AMEP algorithm with respect to all controller parameter of KEPCO systems. Simulation results for interarea and local mode show that the proposed AMEP algorithm can be used for turning controller parameter, and verifying system data and linear model.

Stability Analysis of Mathieu Equation by Floquet Theory and Perturbation Method (Floquet 이론과 섭동법에 의한 Mathieu Equation의 안정성해석)

  • Park, Chan Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.734-741
    • /
    • 2013
  • In contrast of external excitations, parametric excitations can produce a large response when the excitation frequency is away from the linear natural frequencies. The Mathieu equation is the simplest differential equation with periodic coefficients, which lead to the parametric excitation. The Mathieu equation may have the unbounded solutions. This work conducted the stability analysis for the Mathieu equation, using Floquet theory and numerical method. Using Lindstedt's perturbation method, harmonic solutions of the Mathieu equation and transition curves separating stable from unstable motions were obtained. Using Floquet theory with numerical method, stable and unstable regions were calculated. The numerical method had the same transition curves as the perturbation method. Increased stable regions due to the inclusion of damping were calculated.

Design and Analysis of a Robust State Estimator Combining Perturbation Observer (섭동관측기를 연합한 강인 상태추정기 설계 및 해석)

  • Kwon SangJoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.477-483
    • /
    • 2005
  • This article describes a robust state estimation method which enables to produce reliable estimates in spite of heavy perturbation including plant uncertainty and external disturbances. The main idea is to combine the standard state estimator with the perturbation observer in the estimator frame. The perturbation observer reflects equivalent quantity of plant uncertainty and external disturbances during the estimation process so that the state estimator dynamics gets as close as possible to the real plant dynamics. The robust state estimator proposed in this paper is given in a recursive discrete-time form which is very useful fur implementation purpose. In terms of the error dynamics derived for the robust state estimator, we discuss the stability issue and noise sensitivity. The effectiveness and practicality of the robust state estimator are verified through numerical examples and experimental results.

Eigenvalue Perturbation of Augmented Matrix for Control Parameter (제어기 정수에 대한 확대행렬의 고유치 perturbation)

  • Shim, K.S.;Song, S.G.;Nam, H.K.;Kim, Y.G.;Moon, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.17-19
    • /
    • 2001
  • In this paper, eigenvalue perturbation theory and its applications for the augmented system matrix are described. This theory is quite useful in the cases where any change in a system parameter results in signifiant changes to most of the elements of the augmented matrix or where the forming of sensitivity matrix so complicate. And AMEP(augmented matrix eigenvalue perturbation) for the excitation system parameters are computed for analysis of small signal stability of KEPCO 215-machine 791-bus system.

  • PDF

Sub-degrees of freedom method with perturbation procedure for reduction of eigenvalue computation

  • Liu, Xiao-Lin
    • Structural Engineering and Mechanics
    • /
    • v.8 no.6
    • /
    • pp.579-589
    • /
    • 1999
  • A new way to reduce the eigenvalue computation effort in structural dynamics is presented in this paper. The degrees of freedom of a structure may be classified into groups that are termed as sub-degrees of freedom. The eigenvalue analysis is performed with each of sub-degrees of freedom so that the computing time is much shortened. Since the dynamic coupling between sub-degrees of freedom is selected to be small and it may be considered as a perturbation, the perturbation algorithm is used to obtain an accuratae result. The accuracy of perturbation depends on the coupling between sub-degrees of freedom. The weaker the coupling is, the more accurate the result is. The procedure can be used to simplify a problem of three dimensions to that of two dimensions or from two dimensions to one dimension. The application to a truss and a space frame is shown in the paper.

Robustness analysis of pole assignment in a specified circle for perturbed systems (섭동 시스템에 대한 규정된 원 내로의 극점배치 견실성 해석)

  • Kim, Ga-Gue;Choi, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.78-82
    • /
    • 1995
  • In this paper, we consider the robustness analysis problem in state space models with linear time invariant perturbations. Based upon the discrete-time Lyapunov approach, sufficient conditions are derived for the eigenvalues of perturbed matrix to be located in a circle, and robustness bounds on perturbations are obtained. Spaecially, for the case of a diagonalizable hermitian matrix the bound is given in terms of the nominal matrix without the solution of Lyapunov equation. This robustness analysis takes account not only of stability robustness but also of certain types of performance robustness. For two perturbation classes resulting bounds are shown to be improved over the existing ones. Examples given include comparison of the proposed analysis method with existing one.

  • PDF