Comm. Korean Math. Soc. 11 (1996), No. 3, pp. 841-853

ESTIMATION FOR THE DERIVATIVES OF
MEAN PERFORMANCE MEASURES IN A
MARKOVIAN QUEUE WITH BATCH ARRIVALS

HEUNG SIK PARK

ABSTRACT. This article finds smoothed perturbation analysis estimates
for the derivatives of mean performance measures in a Markovian queue
with batch arrivals. We show that those estimates can be observed from
a single sample path.

1. Introduction

In this paper, we consider a batch arrival queueing process defined
by the distribution functions Fy(z, ;) = 1 — e~ %% {=1,2, ... n and
G(y,0) =1 — e ¥ as follows.

At each state, except state 0, X; .7 = 1,2,...,n and YV are gener-
ated according to Fj(x,A;) 7 = 1,2,...,n and G(y,6) respectively. If
min{X;,...,X,,Y} = X;, X, becomes a sojourn time of the state, and
the process jumps up i-steps. If min{X,,...,X,.Y} =Y | ¥ becomes
a sojourn time of the state and the process jumps down one step. At
state 0, min{ X, ..., X, } becomes a sojourn time after which the process
always jumps up.

In the following section, we derive a method to estimate right deriva-
tives of the mean performancd measures from a single sample path in
the above mentioned batch arrival queueing process. First, we find an
estimate for the derivative of expected total system time during a busy
cycle with respect to the mean service time and, after that, we do the
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same thing for the expected length of busy cycle so that we can find an
estimate for the derivative of steady state mean system time. In [1,2], we
derived estimates for those derivatives with respect to the mean inter-
arrival time in an M/M/1 queue. Here, by using appropriate conditional
expectations, we derive estimates for those derivatives with respect to
the mean service time in a batch arrival queue. The result also clearly
shows that IPA estimate does not work in general. We begin with defin-
ing notations.

If X1,X,,...,X, and Y are generated at the end of (i-1)-th sojourn
time, we denote it by X, , X, ,...,Xi » and Y, respectively. Hence, the
i-th sojourn time will be X, ¢ if min{X,; . X2 ..... Xin, Yi} = Xk

Co.0(6) denotes the length of a busy cycle i.e. the recurrence time of
state 0, C;o(8) denotes the time for the first travsition from state i to
state 0, and C; (6, ) denotes C; ¢(6) in the j-th busy cycle.

R; ¢(8) represents the area under the graph of the process from state
1 to state 0. We note that Ry () 1s the sum of system times during a
busy cycle for the above mentioned queueing process.

Let U denote the set of indices at which the process jumps up during
Co,0(8),D be the set of indices at which the process jumps down during
the same busy cycle Cy ¢(8). Let D, be the subset of indices in D which
are greater than i.

Suppose that when the parameter 8 is increased to 6 + A6 . Y; is
correspondingly increased to Y; + AY;. In this case, we let A; be the
event of a corresponding change from jump-down to jump-up at the end
of sojourn time Y; and B; be the event that any change from jump-down
to jump-up does not occur, 1.e.,

Ai = {}/l < min"(i‘], Y“i +A}fz Z m,iﬂXi,j}a
J J

B, ={Y; <minX,;, Y; + AY; <min X, ;}.
7 J

IC denotes the set of indices at which interchanges occur when there are
two or more interchanges in a sample path during Cy o(6).
For convenience, we introduce the notation W, as follows

W, - Ay iEjglIC
B;, ifjelIC.
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a(2) denotes the state of process at the i-th transition.
Finally, k(?) denotes the index of minimum interarrival time generated
at the i-th transition. Hence, if min; X; j = X, ;, k(z) = ¢.

2. Estimate for the expected total system time of customers
during a busy cycle

In this section, we derive a method to estimate the expected total
system time of customers from a single sample path.

THEOREM 1. In a batch arrival queueing process defined in section
1, assume the stability condition 8 5_7_, kAx < 1. Then

dE[Ryo(0)] 1 .
— —gE[;)a(l)Yz]

D k=i(k +1)A
E Caii (6
+9)\1+ T+ On. +1 [en ()10 )]

> ri(k+DAx
oN i - O T E[ID[IE[Ry,0(6)]

Sores k(k+ 1)
+ 2(9)\1k+ SO, + 1)EI|D|]E[C1,0(9)].

_+_

PRrooF. Considering the effects on a given sample path of a small
change in the parameter 0 [1,2], we have

Rg,o(8 + AB) — Ry p(0) = I(no interchange)z a(t)AY;
1€D
+ Z I(only one interchange at Y;)x
ieD
{ D ald)AY; + (ki) + 1)Caqiy-1,000) + (Xi k(i) — Yo)a(i)
JjED—i
+ D (k(3) + DAY; + Rygiy41,0(8 + A6)}
teD;
+ I{two or more interchanges){Ro,0(6 + Af8) -- Ro o(6)}
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= Z a()AY; + Z I(only one interchange at Y;)*
1€D €D
[(k(2) + 1)Caiy=1,0(8) +{X; ki) — (Yi + AY)}a (5)
+ Y (ki) + DAY + Ry (5y41.0(6 + A8)]

teD;
+ I(two or more interchanges){Ro,0(6 + Af) — Ry ,(6) — Z o(1)AY;}
1eD
Using notations from section 1 and noting that AY = X 7 A8 for ex-

ponential random varlable we have the following r~)<:pectat10n from the
above expression.

(1)
E[ROYO(B + Af) — RO,O(H)]
AG
= B[Y a2 71+ —E D 1A JT 1B)HKG) ~ 1)Caiy 1 0(6)
€D 1€D jED—1

Y,
Xk = (Y A0 Jali) + D (k) + 1>—Ae+ Rigiyy1.0(8 + A6)Y]
teD;

Bl S ATT 1OV Roo(s + a0) = Ruo(®) - 3 ali) 2a6)

uC|>1 ieD ieD

In the above expression, [IC| > 1 denotes all the possible combina-
tions of interchanges when there are two or more interchanges.

When A#f goes to zero, we compute the limit value of the second term
in the right hand side of (1) and show the limit value of the third term
is equal to zero. Similarly as in [1,2]., we consider events of the following
type

{minjz, ; < Yo, min; Xz ; > Y- minjz; > ¥,

MIN;Ty; = Tys, MGy = Lo .. 1N T = X3}

Let [ be the number of sojourn times during a busy cycle. If [ is given,
by selecting all the possible choices of inequality signs and considering
all the possible jump sizes obtained from min; X;; .t = 1.2....,], we
have finite events of this type. Let us denote these events by H, ,, .l =
2,3,...,i m=1,2,..... Let H be the smallest o-algebra generated by
these events. Now, conditioning on H. we compute the limit value of
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the second term in the right hand side of (1)
B3 1A [T TB)IkG) + 1)Cagi)-1,0(0)]

i€D JED—¢
(2) = ELE_ 1Al [] 1BHHKG) +1)Cagy-1,0(8)|H] ]
i€eD JED -1
= ZZ ED (AN ] 1B}k + 1)Cagiy—1,0(8)| Hi,m] P(Him)
m ieD FED -1

Since I(A;) is conditionally independent of I(B;) and C\y;)—1,0(6).

E[I(A:){ H I(B;)}k(z) + 1)Co(iy—1,0(0) | Him]
(3) JED—1
= E[I(A;)|H;m]E[{ H I(B;) }k(2) + 11Cq(i)-1,0(0) | Hy m]
JED -1
Then

E[I(Al)lHl,m]
=E[I(Y; <minX,; ,Y; 4+ AY; <min X;, )| Hi m]
J J
Ad
=P{Yi<Xip <1+ —
(4) 0
Af
= P{Yi <Xy <(14 )Y
_ (M + A4+ X, )A6
Tt A)(0 A0 +1

From (3) and (4), expression (2) becomes

(5)
(M1 + A2+ 4 XA,)A0 R
(A +Az 4+ A, )(9+A9)+1

ZZEZ{ H I(B;)}k(2) + 1)Coqiy-1,0(0) | Hi,m) P(Hi )

t€ED jED—:
_ (M1 + A2+ + 20)AH
YV +)\n)(9+A9)+1
E[ED { [I IB)}KG) + 1)Caiy-1,0(6)]

i€D jED—i

YilY; < HljinXi,jaInjinXi,j = Xi:}

Vi< X, <minX,;}
j#t
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Since D _;cp Caciy—1,0(8) < |D|Co,0(8) and E[|D|Cy0(8)] < oo, by the

Lebesgue convergence theorem[3],

lim AG ZI(A H H I(B;)}(k(i) + 1)Ca(i)-1,0(0)]

AB—0+
€D JED—I

L (M+Ark + An)AG
T abo+ AB A+ A4+ A N0+ A6) + 1

EQZ{II I(B;)}k(1) + 1)Cai)-1.0(8)]

€D jED—

Mttt A
a (A1+A2+---+A )8+ 1

im Y { [ 1Bk + 1)Cagiy—1,0(8)]

0+
A9 €D j€D—i

Al +A2+ e _l_An .
= E[> (k) + 1)Cage)—1.0(8
(/\1 + /\2 4t /\n)0 +1 [ZEZD( (l) ) (7) 1,0( )]

Let HR; ,» be an event of the following type

{min X, ; <Y, minX3; > Ys,...min; X;; > Y1}
j j

Also, let HR be the smallest o —algebra generatec by all events of the
form HR; .. Then, for any ¢ in D

n

Elk(i) + 1|1HR ) = ) (k+ 1)P{min X, ; = X;4|¥ < min X, ;}
. — J J
(7) o )
=S (k+1 k
2k Dy

In other words, E[k(¢) + 1|HR] is a constant for all : € D. Since

E[(k(i) + 1)Coqiy—1,0(6)|H Ry, m]
= E[(k(z) + 1)|HR m]E[Cq(iy-1,0(0) HRi m),
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E[D_(k() + 1)Ca(iy-1,0(0)]
t€D
=E[E[D (k(i) + 1)Ca(i)—1,0(8) | H R]]
€D

=E[E[k(:) + {HRIE[Y _ Ca(i)-1,0 )| HE]]
ie€D

=E[k(i) + 1|{HR|E[E]Y _ Ca(i—1,0(6)|H R]]
€D

E[Z Ca(iy—1.(6)]

(8)

Zk (k4 1)Ax
/\1+/\2+ 4 A,

Hence, from the expression (6) and (8),

) 1 )
R @E% I(A"){jer,)[_i I(B;)}k(5) + 1)Ca(iy—1,0(6)]

(9)

ZZ:l(k'{'l)/\k
= E[S" Cagiy_1.0(6
CathtFAf+1 [,-EZD ()-1.0(0)]

On the other hand,

E[I(A){ J] I(B)}Riqy1,0(6+ A8)|H, 1)

JED—1
E[I(A)|HimlE[ [] 1(Bj)|Him|E[Rigi+1,0(6 + A8)|Hi ]
JED—1
= EL(A)HimE[ [ I(B))|Himl*
JED—1

E[(k(i) + 1)R1,0(6 + A8) + Mélﬂ“i_)

= E[I(A)|HimJ(E((k()) + D{ [ I(B;)}HimlE[R10(8 + 26)]
JED—i

N E[(k(i) + 1)k(i){ H I(B;)} | H;.m)E[C1 0(8 + AB)])

2
jeED—i

C1,0(6 + AG) | Hy ]
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Hence,
E[ZI(Ai){ H I(B;)} Rigiy41.0(0 + A8))
ieD jeD—i
= E[E[Y_ 1(AN{ [ 1(B)}Rigir41.0(6 + 28)|H]]
10) ieD jeD i
( = E[I(A)HimJED_(kG)+ D T] 1 E[R1,0(8 + A8))
i€ D JED—

+ ey LMD T 1 )yim(, o6 + a0))

1€D JED ~1

By the Lebesgue convergence theorem,

N B 140 TT 1B R 11006 + 801
1 (A1 4+ A2+ -+ Ay )A

T Al AT O T T +A)(9+A9)+1*
B[S k(i) + DY [T 108 NELR1 (6 + A6)]

teD JED —4
+E[§)m‘%‘% ]El;[ ,I(B OHEIC 1 0(6 + A6)])
(1) =Gt
(B[ lim | Yokt +0{ J] IB)YE] lim | Ryo(f+ A6)]

1€D 1€D—3

+ B[ _lim Z(’“ DEDEO T 1N tim | Cuate + 20))

—0+ .
AG 0 JED

_ AMHA+ - +)\ .
YRS VN WY

(E[D_(kG) + D]E[Ry o(8)] + B>

€D 1€D

(k(3) + L)k(3)

2 JE[C1,0(8)])

By the similar method as in the statements follow:ng (6),

E[y (k(i)+ 1)] = E[E[)_(k(i) + 1)|H R]]

€D iED
= E[k(z) + 1|HR]E||D|]
Zk:](k + 1 )\k

= E[\D
A+ 4 A, 1Dl
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and

E[EI:) k(z)(k(zz) + 1)] _ E[E[ZI:) k(z)(k(;) + 1)|HR]]
1€ 1€
= gD gy o)
_ anlk(k—!—l)/\k
— e D)

From this, expression (11) becomes

Dk Rk + 1A
ZZ:I k(k+ 1)/\’6
2{(Ai + X2+ + An)0 + 1}

0E[|D|]E[R1,0(0)]
(12)
+

E[|D|JE[C1,0(6)]

On the other hand,

Jim Sy 1A ] I(Bn}Z(k(im)%Aa]

i€D jED~i ieD
“3) [T 1m0 Yk + 1
= E[ lim H I(B;)} —]=0
Af—ot zzI:) JED—1 €D 9
and
(14)
i, 3PS T TT 18 Moo + (4 + AT }oi)

< Bm B HA) ] 1B Yt v+ Y,-%ﬁ)}au‘)]

€D j€ED—

AgianIA){ [T 1B Y Fat) =

JED—1 €D

Finally, we show that the last limit value in (1) is equal to zero. If we
assume that the first interchange among two or more interchange occured



850 Heung Sik Park

at 1,
Bl 37 AT {WHRoo(6+ A8) - Roo(8) - 3 a(i)%AG}]
(15) [IC|>1 i€D ien
= EL 1)L TT 10V HRoo(6 +89) = Ro(0) = 3 ath) 2L apy
teD JED—i keD

Similarly as in (2), by using conditional expectation, the above expres-
sion becomes

E[EI(A)HAED { [] 10wy

1€ED jED—
(Roo(6+20) = Roo(6) — 3" (k) 2£ A0} |H, 0]
k€D
= [EU(A)HREED { J] 1W))}
(16) €D jeED—:
{Roo(6+ 26) ~ Ry (8) = > a(k)—Ae}lH, ml]
keD
_ (A1 +A2 - +A)A9
T (Mt At A0+ Af) +1 ;){JI;III(W
{Ro,0(8 + A6) — Roo(6) — Y a(k) };M}]
keD
Trivially,

Y) : ;
Ro.o(6 + A6) = Ro(6) ~ ) alk)—-08 < Ro (8 + A6)
keD

Hence, the expression (16) becomes less than or equal to
(17)

(A1 + X+ -+ X)A8

A+ A2+ + A, )(0+A0

EY { [T 20w5)}Roo(8 + 26)]

€D 3€D—1
If A6 is small enough to satisfy the stability condition 8 Yore kA< 1,

E[|D|Ry (8 + AB)] < oo [5].
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By the Lebesgue convergence theorem,

(18)
A Y
M}lmn+ ~ E[“;;I{E) I(W)HRo,0(8 + A8) — Roo(8) — 'EZI:JQ(,WM}]
: 1 (M AAat -+ A ,
N LW vy e v )(0+A9)+1 ['EZIZJ{JFE[_,_MWJ)}RO,UW+Ae)1

Ar+ Ao+ 4 Ag
- (z\1+/\z+~~+xn)9+1 AG—»0+

ST 1Wi) Roo(8 + A8 =

1€D jED i

Hence, from (1),(9),(12),(13),(14), and (18), the theorem is proved. [

3. Estimate for the derivative of expected busy cycle

Using a similar method as in section 2, the result for expected busy
cycle can be obtained. We omit the proof and simply state the result in
theorem?2.

THEOREM 2. Under the same assumption as in theorem 1,

dE[Coo(8)] _ 1
— —E[Z Y]
1€D
Sre (k4 1)

.+_
M+ 4+ +A)0+1

E[ID[]E[Cy 0(6)]

4. Verification for a simple queue

Here, we will verify theorem 2 for a batch arrival queue defined by
the distribution functions Fj(z,);) = 1 — e %,i = 1,2 and G(y,8) =
1—e~7Y as in section 1. Let N be a batch size, B be a busy period, and
Sy =Y, +---+ Yy be a batch service time.

E[Cy4(8)] = E[min(X,, X,)] + E[B]

1 1
= —+—E[SN]1—_—-;

A1+ Az
_ 1 8u+2) 1
BBYEEY A+A2 1—-6(h +2),;)
1

N (A4 A2){1 = 8(A1 +2A;)}
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dE[Cyo(0)] A1 +2X, 1

19 _ _
(19) d6+ Mt (1-pi2

On the other hand,

1 1 24,
B(ID|| = - E|N] = A1t 2
1—0p 1—p A1+ A;

BICyo(0)) = [ EIV] = 728 fee. 3]

. 1
EYY <mn(X; . X))]= ——
Y] min( X, X;)] % T

E[)_Yi]=E[ID|E[Y]Y < min(X,. Xs)]

€D

Hence,

1 oy Dk (k1)
EE%Y’H Ot ma 51 BUDDEC (8]

2A; 3\
Oh + 4208 +1

(20) = E[lDH{%E[YlY < min(X;, X)) + E[C(8)]}

_/\1+2/\2 1
At Az (1—p)?

From (19) and (20), the result follows.

5. Remarks

All the quantities in theorem 1 and 2 can be estimated while we
observe a simulated sample path of the system. For example, if m busy
cycles of our queueing process were simulated, the following estimation
can be obtained by simply observing a single sample path.

E[C, o(0)] = 2 i=1 Ci0(8.7)

m

The other quantities in theorem 1 and 2 can be estimated in a similar
way.
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Eﬁ%ﬂ can be estimated also by the conventional finite difference
method, that is,

dE[Cy 5(8)] 1 {E;';l Coo(0+ A6,1) — 3" Coo(b,4)

dé dt m J

IR

It is known that the methods in theorem 1 and 2 are more economical
and more accurate than the conventional finite difference method[6].
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