• Title/Summary/Keyword: personal genome

Search Result 29, Processing Time 0.028 seconds

Differential Gene Expression Profiling in Human Promyelocytic Leukemia Cells Treated with Benzene and Ethylbenzene

  • Sarma, Sailendra Nath;Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • Benzene and ethylbenzene (BE), the volatile organic compounds (VOCs) are common constituents of cleaning and degreasing agents, paints, pesticides, personal care products, gasoline and solvents. VOCs are evaporated at room temperature and most of them exhibit acute and chronic toxicity to human. Chronic exposure of benzene is responsible for myeloid leukemia and also ethylbenzene is also recognized as a possible carcinogen. To evaluate the BE effect on human, whole human genome 35 K oligonucleotide microarray were screened for the identification of the differential expression profiling. We identified 280 up-regulated and 201 down-regulated genes changed by more than 1.5 fold by BE exposure. Functional analysis was carried out by using DAVID bioinformatics software. Clustering of these differentially expressed genes were associated with immune response, cytokine-cytokine receptor interaction, toll-like signaling pathway, small cell lung cancer, immune response, apoptosis, p53 signaling pathway and MAPKKK cascade possibly constituting alternative or subordinate pathways of hematotoxicity and immune toxicity. Gene ontology analysis methods including biological process, cellular components, molecular function and KEGG pathway thus provide a fundamental basis of the molecular pathways through BEs exposure in human lymphoma cells. This may provides a valuable information to do further analysis to explore the mechanism of BE induced hematotoxicity.

A comparison of the elimination rate of artificial dental plaque between reciprocating- and rotating-interdental toothbrushes

  • Lim, Kun-Ok
    • Journal of Korean society of Dental Hygiene
    • /
    • v.21 no.1
    • /
    • pp.17-25
    • /
    • 2021
  • Objectives: Interdental toothbrushes are made and sold in various design types and brush thicknesses. However, there is little research on which type of interdental toothbrush currently manufactured and sold on the market is the most effective in eliminating interdental plaque. Therefore, this study aims at comparing the elimination rate of artificial dental plaque between reciprocating- and rotating-types of interdental toothbrush based on the frequency of application and thickness of brush. Methods: This study focused on the effective management of dental plaque using interdental toothbrush, a recommended item for personal dental hygiene. The method was as follows: artificial dental plaque coloring was applied to the distal surface of artificial tooth #46 and the mesial surface of #47. The area was subject to reciprocal movement three and six times to eliminate artificial plaque. Results: The results showed that using a 0.7mm rotating interdental toothbrush, on the proximal surface of each molar, the elimination rates were: on the distal surface of #46, upon three applications 40.24%, upon six applications 30.41%; on the mesial surface of #47, upon three applications 44.52%, upon six applications 29.72%. Conclusions: These results showed that for rotating-type interdental toothbrushes, a high dental plaque elimination rate was observed even though many reciprocal movements were not performed.

Precision nutrition: approach for understanding intra-individual biological variation (정밀영양: 개인 간 대사 다양성을 이해하기 위한 접근)

  • Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.55 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • In the past few decades, great progress has been made on understanding the interaction between nutrition and health status. But despite this wealth of knowledge, health problems related to nutrition continue to increase. This leads us to postulate that the continuing trend may result from a lack of consideration for intra-individual biological variation on dietary responses. Precision nutrition utilizes personal information such as age, gender, lifestyle, diet intake, environmental exposure, genetic variants, microbiome, and epigenetics to provide better dietary advices and interventions. Recent technological advances in the artificial intelligence, big data analytics, cloud computing, and machine learning, have made it possible to process data on a scale and in ways that were previously impossible. A big data platform is built by collecting numerous parameters such as meal features, medical metadata, lifestyle variation, genome diversity and microbiome composition. Sophisticated techniques based on machine learning algorithm can be used to integrate and interpret multiple factors and provide dietary guidance at a personalized or stratified level. The development of a suitable machine learning algorithm would make it possible to suggest a personalized diet or functional food based on analysis of intra-individual metabolic variation. This novel precision nutrition might become one of the most exciting and promising approaches of improving health conditions, especially in the context of non-communicable disease prevention.

The OAuth 2.0 Web Authorization Protocol for the Internet Addiction Bioinformatics (IABio) Database

  • Choi, Jeongseok;Kim, Jaekwon;Lee, Dong Kyun;Jang, Kwang Soo;Kim, Dai-Jin;Choi, In Young
    • Genomics & Informatics
    • /
    • v.14 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • Internet addiction (IA) has become a widespread and problematic phenomenon as smart devices pervade society. Moreover, internet gaming disorder leads to increases in social expenditures for both individuals and nations alike. Although the prevention and treatment of IA are getting more important, the diagnosis of IA remains problematic. Understanding the neurobiological mechanism of behavioral addictions is essential for the development of specific and effective treatments. Although there are many databases related to other addictions, a database for IA has not been developed yet. In addition, bioinformatics databases, especially genetic databases, require a high level of security and should be designed based on medical information standards. In this respect, our study proposes the OAuth standard protocol for database access authorization. The proposed IA Bioinformatics (IABio) database system is based on internet user authentication, which is a guideline for medical information standards, and uses OAuth 2.0 for access control technology. This study designed and developed the system requirements and configuration. The OAuth 2.0 protocol is expected to establish the security of personal medical information and be applied to genomic research on IA.

Genetic counseling in Korean health care system (유전상담의 제도적인 고찰)

  • Kim, Hyon-J.
    • Journal of Genetic Medicine
    • /
    • v.4 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Unprecedented amount of genetic information being generated from the result of Human Genome Project (HGP) and advances in genetic research is already forcing changes in the paradigm of health and disease. The ultimate goal of genetic medicine is to use genetic information and technology to develop new ways of treatment or even prevention of the disease on an individual level for 'personalized medicine'. Genetics is play ing an increasingly important role in the diagnosis, monitoring and management of common multifactorial diseases in addition to rare single-gene disorders. While wide range of genetic testing have provided benefits to patients and family, uncertainties surrounding test interpretation, the current lack of available medical options for the diseases, and risks for discrimination and social stigmatization may remain to be resolved. However an increasing number of genetic tests are becoming commercially available, including direct to consumer genetic testing, yet public is often unaw are of their clinical and social implications. The personal nature of information generated by a genetic test, its power to affect major life decisions and family members, and its potential misuse raise important ethical considerations. Therefore appropriate genetic counseling is needed for patient to be informed with the benefits, limitations and risks of genetic tests, prior to informed consent for the tests. Physician also should be familiar with the legal and ethical issues involved in genetic testing to tell patients how w ell a particular genetic risk factor relates with likelihood of disease, and be able to provide appropriate genetic counseling. Genetic counseling become a mandatory requirement as global standard for many genetic testing such as prenatal diagnosis, presymtomatic DNA diagnostic tests and cancer susceptibility gene test for familial cancer syndrome. In oder to meet the challenge of genetic medicine of 21 century in korean health care system, professional education program and certification board for medical genetics specialist including non-MD genetic counselors should be addressed by medical society and regulatory policy of national health insurance reimbursement for genetic counseling to be in place to promote the implementation of clinical genetic service including genetic counseling for proper genetic testing.

  • PDF

Microbial Community of the Arctic Soil from the Glacier Foreland of Midtre Lovénbreen in Svalbard by Metagenome Analysis (북극 스발바르 군도 중앙로벤 빙하 해안 지역의 토양 시료 내 메타지놈 기반 미생물 군집분석)

  • Seok, Yoon Ji;Song, Eun-Ji;Cha, In-Tae;Lee, Hyunjin;Roh, Seong Woon;Jung, Ji Young;Lee, Yoo Kyung;Nam, Young-Do;Seo, Myung-Ji
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.171-179
    • /
    • 2016
  • Recent succession of soil microorganisms and vegetation has occurred in the glacier foreland, because of glacier thawing. In this study, whole microbial communities, including bacteria, archaea, and eukaryotes, from the glacier foreland of Midtre Lovénbreen in Svalbard were analyzed by metagenome sequencing, using the Ion Torrent Personal Genome Machine (PGM) platform. Soil samples were collected from two research sites (ML4 and ML7), with different exposure times, from the ice. A total of 2,798,108 and 1,691,859 reads were utilized for microbial community analysis based on the metagenomic sequences of ML4 and ML7, respectively. The relative abundance of microbial communities at the domain level showed a high proportion of bacteria (about 86−87%), whereas archaeal and eukaryotic communities were poorly represented by less than 1%. The remaining 12% of the sequences were found to be unclassified. Predominant bacterial groups included Proteobacteria (40.3% from ML4 and 43.3% from ML7) and Actinobacteria (22.9% and 24.9%). Major groups of Archaea included Euryarchaeota (84.4% and 81.1%), followed by Crenarchaeota (10.6% and 13.1%). In the case of eukaryotes, both ML4 and ML7 samples showed Ascomycota (33.8% and 45.0%) as the major group. These findings suggest that metagenome analysis using the Ion Torrent PGM platform could be suitably applied to analyze whole microbial community structures, providing a basis for assessing the relative importance of predominant groups of bacterial, archaeal, and eukaryotic microbial communities in the Arctic glacier foreland of Midtre Lovénbreen, with high resolution.

In vitro Multiplication through Single-Node Culture of Sea-Milkwort (Glaux maritima L.) (갯봄맞이(Glaux maritima L.) 실생의 단마디배양을 통한 기내증식)

  • Bae, Su-Ji;Kang, Beum-Chang;Jeong, Mihye;Kim, Soochong;Kim, Chang Kil;Han, Jeung-Sul
    • Horticultural Science & Technology
    • /
    • v.34 no.3
    • /
    • pp.461-471
    • /
    • 2016
  • This study was conducted to establish an in vitro propagation system for sea-milkwort (Glaux maritima L.), which is an endangered coastal plant species with high horticultural value. Two phenotypes, 'Red type (RT)' and 'Pistachio type (PT)' based on the colors of stem and flower, were obtained from a personal horticulturist in 2009 and used for this study as plant materials. The stock plants showed typical morphologies in flower, capsule, and seed appearances as previously reported. Low temperature treatment at $4^{\circ}C$ for four or more weeks after in vitro sowing maximized seed germination percentage, indicating that imbibition of seed and subsequent low temperature treatment are crucial for its germination. The in vitro seedlings had phenotypic variation, falling into 'RT' and 'PT' classes like the stock plants. Although slight differences depending on genotype and medium were recognized, the fourth or fifth nodes detached from the in vitro seedlings revealed the best multiplication efficacy when estimated on the basis of total number of nodes of newly developed axillary shoots. In addition, the nodes from 'RT' and 'PT' regenerated the most shoots on medium supplemented with $0.5mg{\cdot}L^{-1}$ BA alone and $0.5mg{\cdot}L^{-1}$ BA plus $0.5mg{\cdot}L^{-1}$ IAA, respectively. The node culture-derived plantlets were well acclimatized in a culture room ex vitro and completed the pseudo-annual life cycle coincident with that in the natural salt march habitat with the current cultivation method of applying fresh water-irrigation under an inland environment. This work represents the first report of in vitro propagation of sea-milkwort. Thus, our study will contribute to exo-habitat conservation and natural habitat restoration of this endangered species in addition to development of a horticultural product.

Tobacco Use Increases Oxidative DNA Damage in Sperm - Possible Etiology of Childhood Cancer

  • Kumar, Shiv Basant;Chawla, Bhavna;Bisht, Shilpa;Yadav, Raj Kumar;Dada, Rima
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.6967-6972
    • /
    • 2015
  • Background: Cigarette smoking and tobacco chewing are common modes of consuming tobacco all over the world. Parents need to be aware that germ cell integrity is vital for birth of healthy offspring as biological parenting begins much before birth of a child and even before conception. The present study was conducted to determine the etiology of non-familial sporadic heritable retinoblastoma (NFSHRb), by evaluating oxidative sperm DNA damage in fathers due to use of tobacco (smoking and chewing). Materials and Methods: We recruited 145 fathers of NFSHRb children and 53 fathers of healthy children (controls) in the study. Tobacco history was obtained by personal interview. Seminal reactive oxygen species (ROS) in semen, sperm DNA fragmentation index (DFI) and 8 hydroxy 2' deoxyguanosine (8-OHdG) levels in sperm were evaluated. The RB1 gene was screened in genomic blood DNA of parents of children with NFSHRb and controls. Odds ratios (ORs) derived from conditional logistic regression models. Results: There was significant difference in the levels of ROS (p<0.05), DFI (p<0.05) and 8-OHdG (p<0.05) between tobacco users and non-users. The OR of NFSHRb for smokers was 7.29 (95%CI 2.9-34.5, p<0.01), for tobacco chewers 4.75 (2.07-10.9, p<0.05) and for both 9.11 (3.79-39.2; p<0.01). Conclusions: This study emphasizes the adverse effect of tobacco on the paternal genome and how accumulation of oxidative damage in sperm DNA may contribute to the etiology of NFSHRb. In an ongoing parallel study in our laboratory, 11 of fathers who smoked underwent. Meditation and yoga interventions, showed significant decline in levels of highly mutagenic oxidised DNA adducts after 6 months. Thus our lifestyle and social habits impact sperm DNA integrity and simple interventions like yoga and meditation are therapeutic for oxidative damage to sperm DNA.

Study about the Association between Diabetes and the Targeted SNPs of TCF7L2 and FTO Genes (당뇨병에서 TCF7L2와 FTO 유전자의 특정 단일염기다형성과의 연관성 연구)

  • Hsia, Yu-Chun;Park, Jong-Hyung;Jun, Chan-Yong;Ko, Seung-Gyu;Choi, You-Kyung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.504-511
    • /
    • 2010
  • Diabetes is a disease that contains a high concentration of glucose in blood and due to defects in either insulin secretion or insulin action. Although the distinctive causes and factors of diabetes have not been clarified, the genetic factors are suggested as a main susceptibility until now. SNP (Single Nucleotide Polymorphism), as the most common genetic variation, has an influence on personal susceptibility for diseases. A nonsynonymous SNP, which changes the amino acid of the protein and its function, is especially important. Therefore, this study hypothesized that there are associations between specific SNPs of the targeted genes. Transcription factor 7-like 2 (TCF7L2) and fat mass and obesity associated (FTO) genes were selected as target genes from the results of genome-wide association and other related research studies. Second, four nonsynonymous SNPs (three in TCF7L2 and one in FTO gene) were selected as target SNPs by using public database of NCBI (National Center for Biotechnology Information). The recruited personnel was classified into three subgroups of diabetes, impaired fasting glucose (IFG) and normal groups. The individual genotypes of each group were analyzed by resequencing. None of genetic variations at four targeted SNP sites was revealed in all samples of this study. However, this study found two new SNPs that were not reported in TCF7L2 gene. One is synonymous SNP, which is heterozygous of C/T and no amino acid change of asparagine/asparagines, was located at c1641 and found in one normal person. Another is nonsynonymous SNP, which is heterozygous of G/A, was located at c1501 and found in two samples. This new discovered nonsynonymous SNP induce the amino acid change from alanine to threonine. Moreover, this new nonsynonymous SNP was found among two persons, one of whom was a diabetes patient and the other one was a person at boundary between IFG and normal, suggesting that this variant might be associated with IFG or diabetes. Even if there is a limitation of sample number for statistical power, this study has an importance due to the discovery of new SNPs. In the future study, a large sample number of diabetes cohort will be needed to investigate the frequency and association with new discovered SNP.