• Title/Summary/Keyword: personal genome

Search Result 29, Processing Time 0.027 seconds

Molecular adaptation of the CREB-Binding Protein for aquatic living in cetaceans

  • Jeong, Jae-Yeon;Chung, Ok Sung;Ko, Young-Joon;Lee, Kyeong Won;Cho, Yun Sung;Bhak, Jong;Yim, Hyung-Soon;Lee, Jung-Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.102-109
    • /
    • 2014
  • Cetaceans (whales, dolphins, and porpoises) are aquatic mammals that experienced drastic changes during the transition from terrestrial to aquatic environment. Morphological changes include streamlined body, alterations in the face, transformation of the forelimbs into flippers, disappearance of the hindlimbs and the acquisition of flukes on the tail. For a prolonged diving, cetaceans acquired hypoxia-resistance by developing various anatomical and physiological changes. However, molecular mechanisms underlying these adaptations are still limited. CREB-binding protein (CREBBP) is a transcriptional co-activator critical for embryonic development, growth control, metabolic homeostasis and responses to hypoxia. Natural selection analysis of five cetacean CREBBPs compared with those from 15 terrestrial relatives revealed strong purifying selection, supporting the importance of its role in mammals. However, prediction for amino acid changes that elicit functional difference of CREBBP identified three cetacean specific changes localized within a region required for interaction with SRCAP and in proximal regions to KIX domain of CREBBP. Mutations in CREBBP or SRCAP are known to cause craniofacial and skeletal defects in human, and KIX domain of CREBBP serves as a docking site for transcription factors including c-Myb, an essential regulator of haematopoiesis. In these respects, our study provides interesting insights into the functional adaptation of cetacean CREBBP for aquatic lifestyle.

A need of convergence between personal genomics and Korean medicinal typology

  • Kim, Jinju;Chung, Joo-Ho;Jung, Sung-Ki
    • CELLMED
    • /
    • v.3 no.2
    • /
    • pp.11.1-11.2
    • /
    • 2013
  • Advances in individual genome sequencing technology and next generation sequencing technology have allowed for widespread research of human genome, which would give us opportunities not only to change our focus from the experience-based Korean medicine including typology and Sasang constitution to the evidence-based Korean medicine but to provide effective tailored medical care and Tang theory.

Reflections on the US FDA's Warning on Direct-to-Consumer Genetic Testing

  • Yim, Seon-Hee;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.151-155
    • /
    • 2014
  • In November 2013, the US Food and Drug Administration (FDA) sent a warning letter to 23andMe, Inc. and ordered the company to discontinue marketing of the 23andMe Personal Genome Service (PGS) until it receives FDA marketing authorization for the device. The FDA considers the PGS as an unclassified medical device, which requires premarket approval or de novo classification. Opponents of the FDA's action expressed their concerns, saying that the FDA is overcautious and paternalistic, which violates consumers' rights and might stifle the consumer genomics field itself, and insisted that the agency should not restrict direct-to-consumer (DTC) genomic testing without empirical evidence of harm. Proponents support the agency's action as protection of consumers from potentially invalid and almost useless information. This action was also significant, since it reflected the FDA's attitude towards medical application of next-generation sequencing techniques. In this review, we followed up on the FDA-23andMe incident and evaluated the problems and prospects for DTC genetic testing.

Novel Mutations in IL-10 Promoter Region -377 (C>T), -150 (C>A) and their Association with Psoriasis in the Saudi Population

  • Al-Balbeesi, Amal O.;Halwani, Mona;Alanazi, Mohammad;Elrobh, Mohammad;Shaik, Jilani P.;Khan, Akbar Ali;Parine, Narasimha Reddy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1247-1250
    • /
    • 2015
  • Background: Psoriasis, a common cutaneous disorder characterized by inflammation and abnormal epidermal proliferation with a prevalence of 2-3% in the general population, may be linked to certain types of cancer. Several studies have reported an association between interleukin 10 (IL-10) variant polymorphisms and inflammatory diseases such as psoriasis vulgaris although the results vary according to the population studied. No studies have been performed in the Saudi population. The present study concerned novel variants and other genetic polymorphisms of the promoter and exonic regions of the IL10 gene in patients with moderate to severe psoriasis and potential differences in genotype compared to a group of healthy volunteers. Materials and Methods: Patients with moderate to severe psoriasis and healthy controls with no personal or family history of psoriasis were selected from the central region of Saudi Arabia. Polymorphisms of the IL 10 gene of both groups were genotyped. Results: We observed two novel variants in 5'UTR region of the promoter precursor with higher prevalence of the genotype with both wild-type alleles in patients compared to the healthy control group. The differences at positions -377 and -150 were significantly associated with disease, both the variants conferred strong protection against psoriasis in Saudi patients. Conclusions: This observation provides further support for the importance of the part that IL10 plays in the pathophysiology of this disease. Confirmation of our findings in larger populations of different ethnicities would provide evidence for the role of IL-10 in psoriasis.

The Algorithm of implementation for genome analysis ecosystems : Mitochondria's case (유전체 생태계 분석을 위한 알고리즘 구현: 미토콘드리아 사례)

  • Choi, Sung-Ja;Cho, Han-Wook
    • Journal of Digital Convergence
    • /
    • v.14 no.4
    • /
    • pp.349-353
    • /
    • 2016
  • The studies on the human environment and ecosystem analysis is being actively researched. In recent years, The service of genome analysis has been offering the customized service to prevent the disease as reading an individual's genome information. The genome information by analyzing technology is being required accurate and fast analyses of ecosystem-dielectrics due to the spread of the disease, the use of genetically modified organism and the influx of exotic. In this paper the algorithm of K-Mean clustering for a new classification system was utilized. It will provide new dielectrics information as quickly and accurately for many biologists.

Overview of personalized medicine in the disease genomic era

  • Hong, Kyung-Won;Oh, Berm-Seok
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.643-648
    • /
    • 2010
  • Sir William Osler (1849-1919) recognized that "variability is the law of life, and as no two faces are the same, so no two bodies are alike, and no two individuals react alike and behave alike under the abnormal conditions we know as disease". Accordingly, the traditional methods of medicine are not always best for all patients. Over the last decade, the study of genomes and their derivatives (RNA, protein and metabolite) has rapidly advanced to the point that genomic research now serves as the basis for many medical decisions and public health initiatives. Genomic tools such as sequence variation, transcription and, more recently, personal genome sequencing enable the precise prediction and treatment of disease. At present, DNA-based risk assessment for common complex diseases, application of molecular signatures for cancer diagnosis and prognosis, genome-guided therapy, and dose selection of therapeutic drugs are the important issues in personalized medicine. In order to make personalized medicine effective, these genomic techniques must be standardized and integrated into health systems and clinical workflow. In addition, full application of personalized or genomic medicine requires dramatic changes in regulatory and reimbursement policies as well as legislative protection related to privacy. This review aims to provide a general overview of these topics in the field of personalized medicine.

Privacy-Preserving DNA Matching Protocol (프라이버시를 보호하는 DNA 매칭 프로토콜)

  • Noh, Geontae
    • Journal of Internet Computing and Services
    • /
    • v.19 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • Due to advances in DNA sequencing technologies, its medical value continues to grow. However, once genome data leaked, it cannot be revoked, and disclosure of personal genome information impacts a large group of individuals. Therefore, secure techniques for managing genomic big data should be developed. We first propose a privacy-preserving inner product protocol for large data sets using the homomorphic encryption of Gentry et al., and then we introduce an efficient privacy-preserving DNA matching protocol based on the proposed protocol. Our efficient protocol satisfies the requirements of correctness, confidentiality, and privacy.

A Review of Extended STR Loci and DNA Database

  • Cho, Yoonjung;Lee, Min Ho;Kim, Su Jin;Park, Ji Hwan;Jung, Ju Yeon
    • Biomedical Science Letters
    • /
    • v.28 no.3
    • /
    • pp.157-169
    • /
    • 2022
  • DNA typing is the typical technology in the forensic science and plays a significant role in the personal identification of victims and suspects. Short tandem repeat (STR) is the short tandemly repeated DNA sequence consisting of 2~7 bp DNA units in specific loci. It is disseminated across the human genome and represents polymorphism among individuals. Because polymorphism is a key feature of the application of DNA typing STR analysis, STR analysis becomes the standard technology in forensics. Therefore, the DNA database (DNA-DB) was first introduced with 4 essential STR markers for the application of forensic science; however, the number of STR markers was expanded from 4 to 13 and 13 to 20 later to counteract the continuously increased DNA profile and other needed situations. After applying expanded STR markers to the South Korean DNA-DB system, it positively affected to low copy number analysis that had a high possibility of partial DNA profiles, and especially contributed to the theft cases due to the high portion of touch DNA evidence in the theft case. Furthermore, STR marker expansion not only contributed to the resolution of cold cases but also increased kinship index indicating the potential for improved kinship test accuracy using extended STR markers. Collectively, the expansion of the STR locus was considered to be necessary to keep pace with the continuously increasing DNA profile, and to improve the data integrity of the DNA-DB.

Influences of Environmental Chemicals on Atopic Dermatitis

  • Kim, Kwangmi
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.89-96
    • /
    • 2015
  • Atopic dermatitis is a chronic inflammatory skin condition including severe pruritus, xerosis, visible eczematous skin lesions that mainly begin early in life. Atopic dermatitis exerts a profound impact on the quality of life of patients and their families. The estimated lifetime prevalence of atopic dermatitis has increased 2~3 fold during over the past 30 years, especially in urban areas in industrialized countries, emphasizing the importance of life-style and environment in the pathogenesis of atopic diseases. While the interplay of individual genetic predisposition and environmental factors contribute to the development of atopic dermatitis, the recent increase in the prevalence of atopic dermatitis might be attributed to increased exposure to various environmental factors rather than alterations in human genome. In recent decades, there has been an increasing exposure to chemicals from a variety of sources. In this study, the effects of various environmental chemicals we face in everyday life - air pollutants, contact allergens and skin irritants, ingredients in cosmetics and personal care products, and food additives - on the prevalence and severity of atopic dermatitis are reviewed.

DNA chip technology

  • Lee, Sang-Yeop;Yun, Seong-Ho;Choe, Jong-Gil;Im, Geun-Bae
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.119-122
    • /
    • 2000
  • Biological science is being revolutionized by the availability of much sequence information from many genome project With the advanced technology at hand, main trend in biological research is rapidly changing from a structural DNA analysis to understanding cellular function of the DNA sequences. Combined with mechanics, computer, bioinformatics and other advanced technologies, DNA chip technology provides numerous applications because of its robustness, accuracy, and automation. DNA chip is expected to become an indispensable tool in fields of biology, biotechnology, drug discovery, and other application areas. DNA chip can be used for mutation and polymorphism detection, gene expression monitoring and phenotypic analysis as well. If DNA chip is used for the development of pharmaceutical products, it can considerably reduce the cost and time for the entire process of drug discovery and development, and can also contribute in developing personal drugs.

  • PDF