• 제목/요약/키워드: perpendicular to the grain

검색결과 110건 처리시간 0.024초

Evaluation of Dowel Bearing Strength of Structural Composite Lumber(SCL) on the Effect of Moisture Content

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권3호
    • /
    • pp.61-69
    • /
    • 2003
  • This study investigated the effect of moisture content and loading direction on dowel bearing strength of two types of SCL. Dowel bearing tests of LVL and PSL were conducted with two different MC level, 7.5% and 19%, and two different oriention, L-direction(loading parallel to grain) and X-direction(loading perpendicular to grain). Most of specimens showed typical load-deformation curves and intersected 5% offset line. Failure modes were classified into two categories; spliting(for L-direction specimens) and peeling(for X-direction specimens). Dowel bearing strength generally decreased with increasing MC. The decreasing rate was more significant in X-directon. ESG also decreased with increasing MC, and the ratio of ESG of 7.5% versus 19% was about 1.47. Dowel bearing strength of LVL and PSL in L-direction was higher than that of X-direction. This results indicated that MC and loading orientation had a significant effect on dowel bearing strength of SCL. The average dowel bearing strength of LVL were higher than that of PSL in each loading direction. Two types of probability distribution model were chosen to quantify strength distribution, normal and 2-parameter weibull distribution. The two models showed good agreement with the data, especially in lower tail of the cumulative distribution. Normal and 2-parameter weibull distribution seemed to proper model of the dowel bearing strength for each MC levels.

전기도금 시 외부자기장이 CoPtP 합금의 자기 특성에 미치는 영향 (Effects of an External Magnetic Field During Electrodeposition on the Magnetic Properties of CoPtP Alloys)

  • 정원용;박호동
    • 한국자기학회지
    • /
    • 제15권5호
    • /
    • pp.276-281
    • /
    • 2005
  • 전기도금 시 외부자기장을 인가하여 CoPtP 합금을 제조하였을 경우 인가 자장이 합금의 결정성장 방향과 입자의 크기에 미치는 영향을 조사하였다. 전기 도금 시에 도금되는 박막의 수직방향으로 외부의 자기장을 0에서 1 T까지 인가하여 CoPtP 합금을 제조하였다. 외부의 인가자장이 없을 경우에는 합금의 성장이 fcc (111)과 hop (002)가 혼합된 형태를 나타내지만, 외부 인가자장이 1 T일 경우에는 hcp (002)의 형태로만 이루어졌다. CoPtP 합금은 columnar 형태로 성장을 하고 성장이 진행됨에 따라서 합금의 입자크기가 커지게 됨을 확인하였고, 자기장이 존재하는 경우는 CoPtP의 두께가 200nm까지는 cell의 크기가 Co의 단자구 크기 이하인 20nm 이하로 제어되고 박막에 수직방향으로 자화 용의축인 (002)방향으로 hcp 결정의 성장이 유도되었다. 이를 통하여 자기적 성질이 가장 우수한 박막의 두께를 정할 수 있었으며 전류밀도를 제어하여 보자력 6.1 kOe, 각형비 0.9의 우수한 자기적 특성을 나타내는 CoPtP 합금의 전기도금 조건을 확립하였다. CoPtP 합금의 자기적 특성을 VSM을 통하여 확인하였으며 결정방위와 미세구조조직은 XRD와 TEM을 통하여 조사하였다.

박막 두께 및 열처리가 수직자기이방성을 갖는 CoSiB/Pd 다층박막의 자기적 특성에 미치는 영향 (Influence of Layer-thickness and Annealing on Magnetic Properties of CoSiB/Pd Multilayer with Perpendicular Magnetic Anisotropy)

  • 정솔;임혜인
    • 한국자기학회지
    • /
    • 제26권3호
    • /
    • pp.76-80
    • /
    • 2016
  • CoSiB은 비정질 구조를 갖는 강자성체 물질이며, CoSiB과 Pd을 포함한 다층박막은 수직자기이방성을 갖는다. 수직자기이방성은 수평자기이방성에 비해 STT-MRAM에 적용되기에 좋은 이점이 있으며, 특히 비정질 강자성체를 포함한 다층박막은 결정질강자성체를 포함한 다층박막과 비교하여 몇 가지 이점을 지니는데, 첫째는 grain boundary가 없다는 것이며 둘째는 결정질 재료에 비교하여 열적안정성이 보다 좋다는 것이다. 이러한 이유에 따라 우리는 비정질 강자성체 $Co_{75}Si_{15}B_{10}$을 포함하는 다층박막을 제작하여 그 자기적 특성을 연구하였다. 본 연구는 [CoSiB(3, 4, 5, 6) ${\AA}$/Pd(11, 13, 15, 17, 19, 24${\AA})]_5$ 다층박막을 제작하여 VSM 측정을 통해 두께에 따른 그 자기적 특성의 변화를 살펴보았으며, 이후 일부 다층박막의 열처리를 통해 온도에 따른 자기적 특성의 변화추이를 조사하였다. 포화자화값과 보자력은 CoSiB과 Pd 각 층의 두께 변화에 따라 증가와 감소를 반복하였으며, 열처리 온도의 범위는 상온에서 $500^{\circ}C$까지로 특정 온도에서 보자력의 증대를 보였다.

Study on the Magnetic Characteristics of Anisotropic SmCo7-type Alloys Synthesized by High-energy Surfactant-assisted Ball Milling

  • Yu, N.J.;Zhang, P.Y.;Shi, Y.J.;Pan, M.X.;Zhang, S.Y.;Ge, H.L.;Lu, Y.C.
    • Journal of Magnetics
    • /
    • 제19권4호
    • /
    • pp.340-344
    • /
    • 2014
  • An effective process was employed for synthesizing anisotropic magnetic $SmCo_7$-type alloy flakes with high coercivity, which is highly desirable for many applications. The highest coercivity of 16.3 kOe corresponds to a typical flake thickness of 200 nm for the 3-h ball-milled sample. The anisotropy field was calculated by measuring the parallel and perpendicular directions to the easy magnetization direction of the powders. The anisotropy field decreased with the increase of the ball milling time, thus indicating that the decrease of coercivity was mainly caused by the reduction of the anisotropy field. Microstructure analysis indicated that the morphology, grain size, and anisotropy field of these samples have a great influence on the magnetic properties.

합천지역의 쥬라기 화강암에 발달된 결의 특성 (Characteristics of the Rock Cleavage in Jurassic Granite, Hapcheon)

  • 박덕원
    • 암석학회지
    • /
    • 제20권4호
    • /
    • pp.219-230
    • /
    • 2011
  • 합천지역의 쥬라기 화강암에 대하여 결의 특성에 대한 분석을 실시하였다. 미세균열의 분포상은 박편의 확대사진(${\times}6.7$)에서 잘 확인되었다. 일차 우세 미세균열은 1번 면에 평행하고 이차 우세 미세균열은 2번 면에 평행하다. 이들 1번 결과 2번 결을 형성하는 미세균열은 3번 면상에서 상호 거의 수직을 이룬다. 결과적으로 연구대상 석산에서 채취한 쥬라기 화강암에서 발달하는 결은 미세균열의 배향성과 관련이 있다. 빈도수, 길이 및 밀도와 같은 미세균열의 매개변수들은 1번결 > 2번 결 > 3번 결의 순서로 우세하게 나타난다. 이러한 결과는 결의 상대적인 강도를 지시한다. 한편 6개 방향에 따른 압열 인장강도가 측정되었다. 암석의 강도와 상기한 미세균열 매개변수들 사이에는 밀접한 상관성을 보이고 있다.

LNG운반선 방열시스템에 적용되는 적층형 플라이우드의 극저온 기계적 특성 분석 (Cryogenic Mechanical Characteristics of Laminated Plywood for LNG Carrier Insulation System)

  • 김정현;박두환;최성웅;이제명
    • 한국해양공학회지
    • /
    • 제31권3호
    • /
    • pp.241-247
    • /
    • 2017
  • Plywood, which is created by bonding an odd number of thin veneers perpendicular to the grain orientation of an adjacent layer, was developed to supplement the weak points such as contraction and expansion of conventional wood materials. With structural merits such as strength, durability, and good absorption against impact loads, plywood has been adopted as a structural material in the insulation system of a membrane type liquefied natural gas (LNG) carrier. In the present study, as an attempt to resolve recent failure problems with plywood in an LNG insulation system, conventional PF (phenolic-formaldehyde) resin plywood and its alternative MUF (melamine-urea-formaldehyde) resin bonded plywood were investigated by performing material bending tests at ambient ($20^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures to understand the resin and grain effects on the mechanical behavior of the plywood. In addition, the failure characteristics of the plywood were investigated with regard to the grain orientation and testing temperature.

PZT 세라믹스의 강도에 미치는 내부응력의 영향 (Effect of internal Stress on the Strength of PZT Cermics)

  • 태원필;윤여범;김송희
    • 한국세라믹학회지
    • /
    • 제33권1호
    • /
    • pp.49-55
    • /
    • 1996
  • The aim of this study is to investigate the change of bending strength and fatigue strength in the unpoled and poled Pb(Zr, Ti)O3 ferroelectrics of tetragonal morphotropic phase boundary (MPM) and rhombohedral com-position in terms of internal stress which is measured by XRD method. Before poling treatment the highest bending strength was found in rhombohedral composition. After poling treatment the bending strength decreas-ed in all compositions but it decreased most remarkably in tetragonal composition. The most prominent de-crease of bending strength after poling treatment in tetragonal was attributed to the occurrence of microcracks due to highanisotropic internal stress around grain boundary which was induced of bending strength after poling in MPB and rhombohedral composition was not due to the occurrence of microcracks but to the increase in tensile internal stress perpendicular to the direction of crack propagation by domain alignment. Fatigue strength was higher before poling treatment than after poling treatment for various compositions.

  • PDF

Magnetic Properties of FePt:C Nanocomposite Film

  • Ko, Hyun-Seok;A. Perumal;Shin, Sung-Chul
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2003년도 하계학술연구발표회 및 한.일 공동심포지엄
    • /
    • pp.220-221
    • /
    • 2003
  • Equiatomic FePt and CoPt alloy thin films have received considerable attention as possible magnetic and magneto-optic recording because of their high magnetic anisotropy energy and high coercivity. The high coercivity in these thin films is due to the presence of finely dispersed ordered FePt phase mixed with disordered FePt phase. However, a high temperature treatment, either substrate heating during deposition or post annealing, is needed to obtain the ordered L1$\_$0/ phase with high value of magneto crystalline anisotropy. Recent microstructural studies on these films suggest that the average grain size ranges from 10-50 nm and the grains are magnetically coupled between each other. On the other hand, the ultrahigh-density magnetic recording media with low media noise imposes the need of a material, which consists of magnetically isolated grains with size below 10 nm. The magnetic grain isolation can be controlled by the amount of additional non-magnetic element in the system which determines the interparticle separation and therefore the interparticle interactions. Recently, much research work has been done on various non-magnetic matrices. Preliminary studies showed that the samples prepared in B$_2$O$_3$ and Carbon matrices have shown strong perpendicular anisotropy and fine grain size down to 4nm, which suggest these nanocomposite films are very promising and may lead to the realization of a magnetic medium capable of recording densities beyond 1 Tb/in$^2$. So, in this work, the effect of Carbon doping on the magnetic properties of FePt nanoparticles were investigated.

  • PDF

Ultrasonic Evaluation of Creep Damage in 316LN Stainless Steel

  • Yin, Song-Nan;Hwang, Yeong-Tak;Yi, Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권4호
    • /
    • pp.33-37
    • /
    • 2007
  • Creep failure of 316LN stainless steel (SS) occurs due to the nucleation and growth of cracks. An investigation was performed to correlate the creep damage with ultrasonic wave speeds and angular frequencies using creep-tested 316LN SS specimens. Ultrasonic wave measurements were made in the direction of and perpendicular to the loading using contact probes with central frequencies of 10, 15, and 20 MHz. We found that the angular frequency and wave speed decreased with increasing creep time to rupture by analyzing the ultrasonic signals from the 15 and 20 MHz probes. Therefore, the creep damage was sensitive to the angular frequency and wave speed of ultrasonic waves.

Co-22%Cr 자성합금박막에서 박막두계에 따른 자기미세구조 변화 (The change of magnetic microstructure with Co-22%Cr film thicknesses)

  • 송오성
    • 한국표면공학회지
    • /
    • 제31권5호
    • /
    • pp.261-265
    • /
    • 1998
  • We investigated compositional separation of Co-23%Cr magnetic alloy thin films with varying film thicknesses. Saturation magnetization and magnetic microstructures were investigated using vibrating sample magnetometer (VSM) and scanning probe microscope (SPM), respectively. Saturation magnetization was as 700 emu/cc for films below 50 nm-thick, and changed to 430 emu/cc for the ones above 2000 nm-thick. This may be due to increment of molar volume of Cr-enriched phase as film thickness increases. The surface grain size in AFM (atomic force microscope) measurement becomes larger as film thickness increases. The MFM (magnetic force microscope) reveals that magnetic microstructure is changed from the fine spherical domains to the maze type domains as film thickness increases. We conclude that employing thickness of Co-22%Cr films below 50 nm is favorable for high density recording in order to enhance perpendicular saturation magnetization and SNR (signal to noise ratio).

  • PDF