• Title/Summary/Keyword: peroxiredoxin 3

Search Result 44, Processing Time 0.126 seconds

Mitochondrial metabolism in cancer stem cells: a therapeutic target for colon cancer

  • Song, In-Sung;Jeong, Yu Jeong;Han, Jin
    • BMB Reports
    • /
    • v.48 no.10
    • /
    • pp.539-540
    • /
    • 2015
  • It has been proposed that the selective elimination of cancer stem cells (CSCs) using targeted therapy could greatly reduce tumor growth, recurrence, and metastasis. To develop effective therapeutic targets for CSC elimination, we aimed to define the properties of CSC mitochondria, and identify CSC-mitochondria-specific targets in colon cancer. We found that colon CSCs utilize mitochondrial oxidative phosphorylation (OXPHOS) to produce ATP. We also found that forkhead box protein 1 (FOXM1)-induced peroxiredoxin 3 (PRDX3) maintains the mitochondrial function, and the FOXM1/PRDX3 mitochondrial pathway maintains survival of colon CSCs. Furthermore, FOXM1 induces CD133 (PROM1/prominin 1) expression, which maintains the stemness of colon CSCs. Together, our findings indicate that FOXM1, PRDX3, and CD133 are potential therapeutic targets for the elimination of CSCs in colon cancer.

Transcriptional Regulation of the AP-1 and Nrf2 Target Gene Sulfiredoxin

  • Soriano, Francesc X.;Baxter, Paul;Murray, Lyndsay M.;Sporn, Michael B.;Gillingwater, Thomas H.;Hardingham, Giles E.
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.279-282
    • /
    • 2009
  • "Two-cysteine" peroxiredoxins are antioxidant enzymes that exert a cytoprotective effect in many models of oxidative stress. However, under highly oxidizing conditions they can be inactivated through hyperoxidation of their peroxidatic active site cysteine residue. Sulfiredoxin can reverse this hyperoxidation, thus reactivating peroxiredoxins. Here we review recent investigations that have shed further light on sulfiredoxin's role and regulation. Studies have revealed sulfiredoxin to be a dynamically regulated gene whose transcription is induced by a variety of signals and stimuli. Sulfiredoxin expression is regulated by the transcription factor AP-1, which mediates its up-regulation by synaptic activity in neurons, resulting in protection against oxidative stress. Furthermore, sulfiredoxin has been identified as a new member of the family of genes regulated by Nuclear factor erythroid 2-related factor (Nrf2) via a conserved cis-acting antioxidant response element (ARE). As such, sulfiredoxin is likely to contribute to the net antioxidative effect of small molecule activators of Nrf2. As discussed here, the proximal AP-1 site of the sulfiredoxin promoter is embedded within the ARE, as is common with Nrf2 target genes. Other recent studies have shown that sulfiredoxin induction via Nrf2 may form an important part of the protective response to oxidative stress in the lung, preventing peroxiredoxin hyperoxidation and, in certain cases, subsequent degradation. We illustrate here that sulfiredoxin can be rapidly induced in vivo by administration of CDDO-TFEA, a synthetic triterpenoid inducer of endogenous Nrf2, which may offer a way of reversing peroxiredoxin hyperoxidation in vivo following chronic or acute oxidative stress.

HepG2 세포의 산화적 손상에 대한 산삼 추출물의 보호효과 - DNA chip을 이용하여 -

  • Kim, Hyung-Seok;Park, Hee-Soo;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.10 no.1 s.22
    • /
    • pp.121-135
    • /
    • 2007
  • Objectives : This study was carried out to examine protective effect of wild ginseng extract on HepG2 human hepatoma cell line against tert-Butyl hydroperoxide (t-BHP)-induced oxidative damage. Methods : To evaluate protective effect of wild ginseng extract against t-BHP induced cytotoxicity, LDH level and activity of glutathione peroxidase and reductase were measured. Gene expression was also measured using DNA microarray. Results : Wild ginseng extract showed a significant protective effect against t-BHP-induced cytotoxicity in HepG2 cell line. It is not, however, related with the activities of glutathione peroxidase and glutathione reductase. Analysis of gene expression using DNA chip, demonstrated that 28 genes were up-regulated in t-BHP only group. Five genes - selenoprotein P, glutathione peroxidase 3, sirtuin 2, peroxiredoxin 2, serfiredoxin 1 homolog - may be related with the protective effect of wild ginseng extract. Conclusions : Based on the results, a protective effect of wild ginseng extract against t-BHP-induced oxidative damage in HepG2 cell line is not associated with the activities of glutathione peroxidase and glutathione reductase, but with the expression of selenoprotein P, glutathione peroxidase 3, sirtuin 2, peroxiredoxin 2, and serfiredoxin 1 homolog.

Serum Peroxiredoxin3 is a Useful Biomarker for Early Diagnosis and Assessemnt of Prognosis of Hepatocellular Carcinoma in Chinese Patients

  • Shi, Liang;Wu, Li-Li;Yang, Jian-Rong;Chen, Xiao-Fei;Zhang, Yi;Chen, Zeng-Qiang;Liu, Cun-Li;Chi, Sheng-Ying;Zheng, Jia-Ying;Huang, Hai-Xia;Yu, Fu-Jun;Lin, Xiang-Yang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.2979-2986
    • /
    • 2014
  • Background: Recently, peroxiredoxin3 (PRDX3) was identified as a novel molecular marker for the progression of hepatocellular carcinoma (HCC). However, its potential clinical application as a serum marker for the early diagnosis and prognosis of HCC has not been investigated. Methods: PRDX3, alpha-fetaprotein (AFP), and other biochemical parameters were measured in serum samples from 297 Chinese patients, including 96 with HCC, 98 with liver cirrhosis (LC), and 103 healthy controls (HCs). Correlations between serum PRDX3 expression and clinicopathological variables and the relationship between serum PRDX3 expression and prognosis were analyzed. Results: Serum PRDX3 was significantly higher in HCC patients than in the LC and HC groups. The sensitivity and specificity of serum PRDX3 for the diagnosis of HCC were 85.9% and 75.3%, respectively, at a cutoff of 153.26 ng/mL, and the area under the curve was 0.865. Moreover, serum PRDX3 expression was strongly associated with AFP level, tumor diameter, TNM stage, and portal vein invasion. Kaplan-Meier curve analysis revealed that HCC patients with high serum PRDX3 expression had a shorter median survival time than those with low PRDX3 expression. Moreover, serum PRDX3 expression was an independent risk factor for overall survival. The inverse correlation between serum PRDX3 and patient survival remained significant in patients with early-stage HCC and in those with normal serum AFP levels. Conclusions: Serum PRDX3 can be used as a noninvasive biomarker for the diagnosis and/or prognosis of HCC.

Oxidative Inactivation of Peroxiredoxin Isoforms by H2O2 in Pulmonary Epithelial, Macrophage, and other Cell Lines with their Subsequent Regeneration (폐포상피세포, 대식세포를 비롯한 각종 세포주에서 H2O2에 의한 Peroxiredoxin 동위효소들의 산화에 따른 불활성화와 재생)

  • Oh, Yoon Jung;Kim, Young Sun;Choi, Young In;Shin, Seung Soo;Park, Joo Hun;Choi, Young Hwa;Park, Kwang Joo;Park, Rae Woong;Hwang, Sung Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.1
    • /
    • pp.31-42
    • /
    • 2005
  • Background : Peroxiredoxins (Prxs) are a relatively newly recognized, novel family of peroxidases that reduce $H_2O_2$ and alkylhydroperoxide into water and alcohol, respectively. There are 6 known isoforms of Prxs present in human cells. Normally, Prxs exist in a head-to-tail homodimeric state in a reduced form. However, in the presence of excess $H_2O_2$, it can be oxidized on its catalytically active cysteine site into inactive oxidized forms. This study surveyed the types of the Prx isoforms present in the pulmonary epithelial, macrophage, endothelial, and other cell lines and observed their response to oxidative stress. Methods : This study examined the effect of exogenous, excess $H_2O_2$ on the Prxs of established cell lines originating from the pulmonary epithelium, macrophages, and other cell lines, which are known to be exposed to high oxygen partial pressures or are believed to be subject to frequent oxidative stress, using non-reducing SDS polyacrylamide electrophoresis (PAGE) and 2 dimensional electrophoresis. Result : The addition of excess $H_2O_2$ to the culture media of the various cell-lines caused the immediate inactivation of Prxs, as evidenced by their inability to form dimers by a disulfide cross linkage. This was detected as a subsequent shift to its monomeric forms on the non-reducing SDS PAGE. These findings were further confirmed by 2 dimensional electrophoresis and immunoblot analysis by a shift toward a more acidic isoelectric point (pI). However, the subsequent reappearance of the dimeric Prxs with a comparable, corresponding decrease in the monomeric bands was noted on the non-reducing SDS PAGE as early as 30 minutes after the $H_2O_2$ treatment suggesting regeneration after oxidation. The regenerated dimers can again be converted to the inactivated form by a repeated $H_2O_2$ treatment, indicating that the protein is still catalytically active. The recovery of Prxs to the original dimeric state was not inhibited by a pre-treatment with cycloheximide, nor by a pretreatment with inhibitors of protein synthesis, which suggests that the reappearance of dimers occurs via a regeneration process rather than via the de novo synthesis of the active protein. Conclusion : The cells, in general, appeared to be equipped with an established system for regenerating inactivated Prxs, and this system may function as a molecular "on-off switch" in various oxidative signal transduction processes. The same mechanisms might applicable other proteins associated with signal transduction where the active catalytic site cysteines exist.

Inflammasome-Dependent Peroxiredoxin 2 Secretion Induces the Classical Complement Pathway Activation

  • Cheol Ho Park;Hyun Sook Lee;Man Sup Kwak;Jeon-Soo Shin
    • IMMUNE NETWORK
    • /
    • v.21 no.5
    • /
    • pp.36.1-36.16
    • /
    • 2021
  • Peroxiredoxins (Prxs) are ubiquitously expressed peroxidases that reduce hydrogen peroxide or alkyl peroxide production in cells. Prxs are released from cells in response to various stress conditions, and they function as damage-associated molecular pattern molecules. However, the secretory mechanism of Prxs and their roles have not been elucidated. Thus, we aimed to determine whether inflammasome activation is a secretory mechanism of Prxs and subsequently identify the effect of the secreted Prxs on activation of the classical complement pathway. Using J774A.1, a murine macrophage cell line, we demonstrated that NLRP3 inflammasome activation induces Prx1, Prx2, Prx5, and Prx6 secretion in a caspase-1 dependent manner. Using HEK293T cells with a transfection system, we revealed that the release of Prx1 and Prx2 relies on gasdermin-D (GSDMD)-mediated secretion. Next, we confirmed the binding of both Prx1 and Prx2 to C1q; however, only Prx2 could induce the C1q-mediated classical complement pathway activation. Collectively, our results suggest that inflammasome activation is a secretory mechanism of Prxs and that GSDMD is a mediator of their secretion. Moreover, secreted Prx1 and Prx2 bind with C1q, but only Prx2 mediates the classical complement pathway activation.

Proteomic analyses reveal that ginsenoside Rg3(S) partially reverses cellular senescence in human dermal fibroblasts by inducing peroxiredoxin

  • Jang, Ik-Soon;Jo, Eunbi;Park, Soo Jung;Baek, Su Jeong;Hwang, In-Hu;Kang, Hyun Mi;Lee, Je-Ho;Kwon, Joseph;Son, Junik;Kwon, Ho Jeong;Choi, Jong-Soon
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.50-57
    • /
    • 2020
  • Background: The cellular senescence of primary cultured cells is an irreversible process characterized by growth arrest. Restoration of senescence by ginsenosides has not been explored so far. Rg3(S) treatment markedly decreased senescence-associated β-galactosidase activity and intracellular reactive oxygen species levels in senescent human dermal fibroblasts (HDFs). However, the underlying mechanism of this effect of Rg3(S) on the senescent HDFs remains unknown. Methods: We performed a label-free quantitative proteomics to identify the altered proteins in Rg3(S)-treated senescent HDFs. Upregulated proteins induced by Rg3(S) were validated by real-time polymerase chain reaction and immunoblot analyses. Results: Finally, 157 human proteins were identified, and variable peroxiredoxin (PRDX) isotypes were highly implicated by network analyses. Among them, the mitochondrial PRDX3 was transcriptionally and translationally increased in response to Rg3(S) treatment in senescent HDFs in a time-dependent manner. Conclusion: Our proteomic approach provides insights into the partial reversing effect of Rg3 on senescent HDFs through induction of antioxidant enzymes, particularly PRDX3.

RPK118, a PX Domain-containing Protein, Interacts with Peroxiredoxin-3 through Pseudo-Kinase Domains

  • Liu, Lungling;Yang, Chenyi;Yuan, Jian;Chen, Xiujuan;Xu, Jianing;Wei, Youheng;Yang, Jingchun;Lin, Gang;Yu, Long
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.39-45
    • /
    • 2005
  • RPK118 is a sphingosine kinase-1-binding protein that has been implicated in sphingosine 1 phosphate-mediated signaling. It contains a PX (phox homology) domain and two pseudo-kinase domains, and co-localizes with sphingosine kinase-1 on early endosomes. In this study we identified a novel RPK118-binding protein, PRDX3 (peroxiredoxin-3), by yeast two-hybrid screening. The interaction between these proteins was confirmed by pull-down assays and co-immunoprecipitation experiments. Deletion studies showed that RPK118 interacted with PRDX3 through its pseudokinase domains, and with early endosomes through its PX domain. Double immunofluorescence experiments demonstrated that PRDX3 co-localized with RPK118 on early endosomes in COS7 cells. PRDX3 is a member of the antioxidant family of proteins synthesized in the cytoplasm and functioning in mitochondria. Our findings indicate that RPK118 is a PRDX3-binding protein that may be involved in transporting PRDX3 from the cytoplasm to its mitochondrial site of function or to other membrane structures via endosome trafficking.

A Pattern Recognition Receptor, SIGN-R1, Mediates ROS Generation against Polysaccharide Dextran, Resulting in Increase of Peroxiredoxin-1 and Its Interaction to SIGN-R1

  • Choi, Heong-Jwa;Choi, Woo-Sung;Park, Jin-Yeon;Kang, Kyeong-Hyeon;Prabagar, Miglena G.;Shin, Chan-Young;Kang, Young-Sun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.271-279
    • /
    • 2010
  • Streptococcus pneumoniae is the major pathogen that frequently causes serious infections in children, the elderly and immunocompromised patients. S. pneumoniae is known to produce reactive oxygen species (ROS) and S. pneumoniae-produced ROS is considered to play a role in pneumococci pathogenesis. SIGN-R1 is the principal receptor of capsular polysaccharides (CPSs) of S. pneumoniae. However, there is a considerable lack of knowledge about the protective role of SIGN-R1 against S. pneumoniae-produced ROS in SIGN-$R1^+$ macrophages. While investigating the protective role of SIGN-R1 against ROS, we found that SIGN-R1 intimately bound to peroxiredoxin-1 (Prx-1), one of small antioxidant proteins in vitro and in vivo. This interaction was increased with ROS generation which was produced by stimulating SIGN-R1 with dextran, a polysaccharide ligand of SIGN-R1. Also, SIGN-R1 crosslinking with 22D1 anti-SIGN-R1 antibody increased Prx-1 in vitro or in vivo. These results suggested that SIGN-R1 stimulation with CPSs of S. pneumoniae increase the expression level of Prx-1 through ROS and its subsequent interaction to SIGN-R1, providing an important antioxidant role for the host protection against S. pneumoniae.

Cytoprotective Effect of Makgeolli Lees on Paraquat Induced Oxidative Stress in A549 Cells via Activation of NRF2 and Antioxidant Genes

  • Jeon, Miso;Rahman, Naimur;Kim, Yong-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.277-286
    • /
    • 2016
  • Makgeolli lees (ML) has several physiological effects such as antioxidant, antidiabetic, and anticancer properties, but its biological functions have not been determined definitively. Here, we tested whether ML has a cytoprotective effect on paraquat (PQ)-induced oxidative stress in the human lung carcinoma cell line A549. At 0.1 mg/ml ML, viability of PQ-exposed A549 cells was restored by 12.4%, 18.5%, and 48.6% after 24, 48, and 72 h, respectively. ML also reduced production of the intracellular reactive oxygen species (ROS) that were generated by PQ treatment. Further experiments revealed that ML treatment enhanced the expression and nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) as well as ARE-GFP reporter activity. ML treatment also effectively increased the expression of NRF2's target genes NAD(P)H dehydrogenase quinone 1 (NQO1) and heme oxygenase 1 (HO-1). Moreover, we found that expression of cytoprotective genes, including glutathione peroxidases (GPXs), superoxide dismutase (SOD1), catalase (CAT), peroxiredoxin 3 (PRDX3), and peroxiredoxin 4 (PRDX4), was greatly enhanced by treatment with ML during PQ exposure. Taken together, the data suggest that treatment of PQ-exposed A549 cells with ML ameliorates cytotoxicity through induction of NRF2 expression and its target genes HO-1, NQO1, and other antioxidant genes. Thus, ML may serve as a functional food applicable to ROS-mediated human diseases.