• 제목/요약/키워드: peroxiredoxin

검색결과 104건 처리시간 0.038초

Peroxiredoxin I deficiency attenuates phagocytic capacity of macrophage in clearance of the red blood cells damaged by oxidative stress

  • Han, Ying-Hao;Kwon, Tae-Ho;Kim, Sun-Uk;Ha, Hye-Lin;Lee, Tae-Hoon;Kim, Jin-Man;Jo, Eun-Kyeong;Kim, Bo-Yeon;Yoon, Do-Young;Yu, Dae-Yeul
    • BMB Reports
    • /
    • 제45권10호
    • /
    • pp.560-564
    • /
    • 2012
  • The role of peroxiredoxin (Prx) I as an erythrocyte antioxidant defense in red blood cells (RBCs) is controversial. Here we investigated the function of Prx I by using Prx $I^{-/-}$ and Prx I/$II^{-/-}$ mice. Prx $I^{-/-}$ mice exhibited a normal blood profile. However, Prx I/$II^{-/-}$ mice showed more significantly increased Heinz body formation as compared with Prx $II^{-/-}$ mice. The clearance rate of Heinz body-containing RBCs in Prx $I^{-/-}$ mice decreased significantly through the treatment of aniline hydrochloride (AH) compared with wild-type mice. Prx I deficiency decreased the phagocytic capacity of macrophage in clearing Heinz body-containing RBCs. Our data demonstrate that Prx I deficiency did not cause hemolytic anemia, but showed that further increased hemolytic anemia symptoms in Prx $II^{-/-}$ mice by attenuating phagocytic capacity of macrophage in oxidative stress damaged RBCs, suggesting a novel role of Prx I in phagocytosis of macrophage.

Peroxiredoxin I participates in the protection of reactive oxygen species-mediated cellular senescence

  • Park, Young-Ho;Kim, Hyun-Sun;Lee, Jong-Hee;Cho, Seon-A;Kim, Jin-Man;Oh, Goo Taeg;Kang, Sang Won;Kim, Sun-Uk;Yu, Dae-Yeul
    • BMB Reports
    • /
    • 제50권10호
    • /
    • pp.528-533
    • /
    • 2017
  • Peroxiredoxin I (Prx I) plays an important role as a reactive oxygen species (ROS) scavenger in protecting and maintaining cellular homeostasis; however, the underlying mechanisms are not well understood. Here, we identified a critical role of Prx I in protecting cells against ROS-mediated cellular senescence by suppression of $p16^{INK4a}$ expression. Compared to wild-type mouse embryonic fibroblasts (WT-MEFs), Prx $I^{-/-}$ MEFs exhibited senescence-associated phenotypes. Moreover, the aged Prx $I^{-/-}$ mice showed an increased number of cells with senescence associated-${\beta}$-galactosidase (SA-${\beta}$-gal) activity in a variety of tissues. Increased ROS levels and SA-${\beta}$-gal activity, and reduction of chemical antioxidant in Prx $I^{-/-}$ MEF further supported an essential role of Prx I peroxidase activity in cellular senescence that is mediated by oxidative stress. The up-regulation of $p16^{INK4a}$ expression in Prx $I^{-/-}$ and suppression by overexpression of Prx I indicate that Prx I possibly modulate cellular senescence through $ROS/p16^{INK4a}$ pathway.

Proteomic Analysis of the Increased Proteins in Peroxiredoxin II Deficient RBCs

  • Yang, Hee-Young;Lee, Tae-Hoon
    • Reproductive and Developmental Biology
    • /
    • 제36권1호
    • /
    • pp.55-64
    • /
    • 2012
  • Peroxiredoxin II (Prdx II; a typical 2-Cys Prdx) has been originally isolated from erythrocytes, and its structure and peroxidase activity have been adequately studied. Prdx II has been reported to protect a wide range of cellular environments as antioxidant enzyme, and its dysfunctions may be implicated in a variety of disease states associated with oxidative stress, including cancer and aging-associated pathologies. But, the precise mechanism is still obscure in various aspects of aging containing ovarian aging. Identification and relative quantification of the increased proteins affected by Prdx II deficiency may help identify novel signaling mechanisms that are important for oxidative stress-related diseases. To identify the increased proteins in Prdx $II^{-/-}$ mice, we performed RBC comparative proteome analysis in membrane fraction and cytosolic fractions by nano-UPLC-$MS^E$ shotgun proteomics. We found the increased 86 proteins in membrane (32 proteins) and cytosolic (54 proteins) fractions, and analyzed comparative expression pattern in healthy RBCs of Prdx $II^{+/+}$ mice, healthy RBCs of Prdx $II^{-/-}$ mice, and abnormal RBCs of Prdx $II^{-/-}$ mice. These proteins belonged to cellular functions related with RBC lifespan maintain, such as cellular morphology and assembly, cell-cell interaction, metabolism, and stress-induced signaling. Moreover, protein networks among the increased proteins were analyzed to associate with various diseases. Taken together, RBC proteome may provide clues to understand the clue about redox-imbalanced diseases.

Peroxiredoxin 3 Has Important Roles on Arsenic Trioxide Induced Apoptosis in Human Acute Promyelocytic Leukemia Cell Line via Hyperoxidation of Mitochondrial Specific Reactive Oxygen Species

  • Mun, Yeung-Chul;Ahn, Jee Young;Yoo, Eun Sun;Lee, Kyoung Eun;Nam, Eun Mi;Huh, Jungwon;Woo, Hyun Ae;Rhee, Sue Goo;Seong, Chu Myong
    • Molecules and Cells
    • /
    • 제43권9호
    • /
    • pp.813-820
    • /
    • 2020
  • NB4 cell, the human acute promyelocytic leukemia (APL) cell line, was treated with various concentrations of arsenic trioxide (ATO) to induce apoptosis, measured by staining with 7-amino-actinomycin D (7-AAD) by flow cytometry. 2', 7'-dichlorodihydro-fluorescein-diacetate (DCF-DA) and MitoSOX™ Red mitochondrial superoxide indicator were used to detect intracellular and mitochondrial reactive oxygen species (ROS). The steady-state level of SO2 (Cysteine sulfinic acid, Cys-SO2H) form for peroxiredoxin 3 (PRX3) was measured by a western blot. To evaluate the effect of sulfiredoxin 1 depletion, NB4 cells were transfected with small interfering RNA and analyzed for their influence on ROS, redox enzymes, and apoptosis. The mitochondrial ROS of NB4 cells significantly increased after ATO treatment. NB4 cell apoptosis after ATO treatment increased in a time-dependent manner. Increased SO2 form and dimeric PRX3 were observed as a hyperoxidation reaction in NB4 cells post-ATO treatment, in concordance with mitochondrial ROS accumulation. Sulfiredoxin 1 expression is downregulated by small interfering RNA transfection, which potentiated mitochondrial ROS generation and cell growth arrest in ATO-treated NB4 cells. Our results indicate that ATO-induced ROS generation in APL cell mitochondria is attributable to PRX3 hyperoxidation as well as dimerized PRX3 accumulation, subsequently triggering apoptosis. The downregulation of sulfiredoxin 1 could amplify apoptosis in ATO-treated APL cells.

Peroxiredoxin 유전자 발현 산화스트레스 내성 형질전환 고구마의 선발 (Selection of transgenic sweetpotato plants expressing 2-Cys peroxiredoxin with enhanced tolerance to oxidative stress)

  • 김명덕;양경실;권석윤;이상열;곽상수;이행순
    • Journal of Plant Biotechnology
    • /
    • 제36권1호
    • /
    • pp.75-80
    • /
    • 2009
  • 산화스트레스에 내성을 지닌 형질전철 고구마 식물체를 개발하기 위해서 산화스트레스에 의해 발현이 강하게 유도되는 SWPA2 프로모터 또는 CaMV 35S 프로모터에 2-Cys peroxiredoxin (Prx) 유전자가 발현되도록 연결한 형질전철 벡터 (pSP-K, pEP-K)를 제작한 후, 각각 Agrobacterium 매개로 형질전환 하였다. 카나마이신 저항성 배발생 캘러스로부터 체세포배발생 과정을 거쳐 100mg/L kanainycin이 포함된 MS 배지에서 소식물체로 발달하였다. Southern 분석으로 외래 유전자가 안정적으로 고구마 게놈 내로 삽입되었음을 확인하였다. 형질전환 고구마 잎 조직을 대상으로 $20{\mu}M$ methyl viologen에 대한 내성 검정을 조사하여 형질전환 고구마 식물체가 비형질전환 식물체 또는 벡터 대조구 식물체 보다 40% 정도 높은 신화스트레스에 대한 내성을 보여주었다. 선발된 형질전환 식물계는 저온, 건조 등의 여러 기지 환경스트레스 내성검정에 이용될 것이며 향후 복합재해 내성 고구마 계통육성에 이용될 수 있을 것으로 기대된다.

Plasma Nuclear Factor Kappa B and Serum Peroxiredoxin 3 in Early Diagnosis of Hepatocellular Carcinoma

  • Ismail, Saber;Mayah, Wael;Battia, Hassan El;Gaballah, Hanaa;Jiman-Fatani, Asif;Hamouda, Hala;Afifi, Mohamed A.;Elmashad, Nehal;Saadany, Sherif El
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권4호
    • /
    • pp.1657-1663
    • /
    • 2015
  • Background: Early diagnosis of hepatocellular carcinoma (HCC) is the most important step in successful treatment. However, it is usually rare due to the lack of a highly sensitive specific biomarker so that the HCC is usually fatal within few months after diagnosis. The aim of this work was to study the role of plasma nuclear factor kappa B (NF-${\kappa}B$) and serum peroxiredoxin 3 (PRDX3) as diagnostic biomarkers for early detection of HCC in a high-risk population. Materials and Methods: Plasma nuclear factor kappa B level (NF-${\kappa}B$) and serum peroxiredoxin 3 (PRDX3) levels were measured using enzyme linked immunosorbent assay (ELISA), in addition to alpha-fetoprotein (AFP) in 72 cirrhotic patients, 64 patients with HCC and 29 healthy controls. Results: NF-${\kappa}B$ and PRDX3 were significantly elevated in the HCC group in relation to the others. Higher area under curve (AUC) of 0.854 (for PRDX3) and 0.825 (for NF-${\kappa}B$) with sensitivity of 86.3% and 84.4% and specificity of 75.8% and 75.4% respectively, were found compared to AUC of alpha-fetoprotein (AFP) (0.65) with sensitivity of 72.4% and specificity of 64.3%. Conclusions: NF-${\kappa}B$ and PRDX3 may serve as early and sensitive biomarkers for early detection of HCC facilitating improved management. The role of nuclear factor kappa B (NF-${\kappa}B$) as a target for treatment of liver fibrosis and HCC must be widely evaluated.

참전복(Haliotis discus hannai)에서 분리한 peroxiredoxin 2 유전자의 분자생물학적 고찰 및 발현분석 (Molecular Characterization and Expression Analysis of Peroxiredoxin 2 cDNA from Abalone (Haliotis discus hannai))

  • 문지영;박은희;공희정;김영옥;김동균;안철민;남보혜
    • 생명과학회지
    • /
    • 제24권12호
    • /
    • pp.1291-1300
    • /
    • 2014
  • 본 연구에서는 참전복(Haliotis discus hannai)의 대용량 염기서열 분석을 통해 peroxiredoxin (Prx) 2 유전자의 full length의 cDNA를 동정하였다. 참전복 Prx 2 유전자의 총 길이는 1,052 bp로 597 bp의 open reading frame는 총 199개의 아미노산을 코딩하고 있으며 분자량은 22 kDa, 등전점은 7.58로 예측되었다. 참전복 Prx 2 아미노산서 열에는 typical 2-Cys Prx의 특징을 갖는 motif와 효소활성에 중요한 cysteine잔기가 매우 보존되어 있었다. 참전복 Prx 2 아미노산 서열은 다른 종의 Prx 2와 64~99% 유사하였고, 특히 패류의 Prx 2와 가장 유사성이 높았다. 참전복 Prx 2 유전자의 mRNA는 관찰된 모든 조직에서 발현하고 있었으며, 특히 외투막, 아가미, 족부, 간췌장, 소화관에서 높은 발현이 확인되었다. 참전복의 Prx 2는 비브리오균으로 감염시킨 전복의 혈구세포에서 감염 후 1시간 째 발현이 증가했다가 서서히 감소하였고, 간췌장 조직에서는 감염 6시간 경과 후 발현 정도가 최고로 증가했다가 감소하였다. 따라서 typical 2-Cys Prx의 특징을 잘 보존되어 있는 참전복 Prx 2는 병원균 감염에 따른 산화스트레스 조절에 관여하는 인자로 중요한 역할을 할 것으로 예상된다.

Peroxiredoxin(PRX) gene family characterization in aves

  • Shin, Sang-Su;Kim, Tae-Min;Shin, Ji-Hye;Park, Tae-Sub;Kim, Jin-Kyoo;Kim, Hee-Bal;Han, Jae-Yong
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2004년도 제21차 정기총회 및 학술발표회
    • /
    • pp.11-12
    • /
    • 2004
  • Peroxiredoxin(PRX)은 원핵세포에서 진핵세포에 이르기까지 세포 내부적으로 발생된 과산화물로부터 자신을 보호하는 중요한 항산화단백질이다. 포유류에서는 아직까지 여섯 개의 다른 동형체가 밝혀졌으며, 조류에서는 아직 발표된 바가 없다. 이 실험을 통해 최초로 조류의 PRX 단백질군들의 특성을 분석하였다. 생물정보분석기법을 통해 알아본 결과, 조류에서는 최소한 진화적으로 보존된 4개의 다른 PRX 단백질로 구성됨을 알 수 있다. 또한 닭의 PRXs로 in vitro 실험을 진행한 결과, 포유류의 것과 비슷한 항산화 활성을 나타냄을 알 수 있었다. 닭의 PRX는 조직 비특이적으로 발현하였으며, 이는 항산화 물질의 피해로부터 모든 조직을 보호하기 위한 필수적 요소이기 때문일 것으로 추정된다. 결론적으로, 생물정보분석기법을 통하여 추정할 수 있는 닭의 기능성 유전자군을 효과적으로 찾을 수 있고, in vitro 실험을 통하여 그 기능을 확인할 수 있었다.

  • PDF

HepG2 세포의 산화적 손상에 대한 산삼 추출물의 보호효과 - DNA chip을 이용하여 -

  • 김형석;박희수;권기록
    • 대한약침학회지
    • /
    • 제10권1호통권22호
    • /
    • pp.121-135
    • /
    • 2007
  • Objectives : This study was carried out to examine protective effect of wild ginseng extract on HepG2 human hepatoma cell line against tert-Butyl hydroperoxide (t-BHP)-induced oxidative damage. Methods : To evaluate protective effect of wild ginseng extract against t-BHP induced cytotoxicity, LDH level and activity of glutathione peroxidase and reductase were measured. Gene expression was also measured using DNA microarray. Results : Wild ginseng extract showed a significant protective effect against t-BHP-induced cytotoxicity in HepG2 cell line. It is not, however, related with the activities of glutathione peroxidase and glutathione reductase. Analysis of gene expression using DNA chip, demonstrated that 28 genes were up-regulated in t-BHP only group. Five genes - selenoprotein P, glutathione peroxidase 3, sirtuin 2, peroxiredoxin 2, serfiredoxin 1 homolog - may be related with the protective effect of wild ginseng extract. Conclusions : Based on the results, a protective effect of wild ginseng extract against t-BHP-induced oxidative damage in HepG2 cell line is not associated with the activities of glutathione peroxidase and glutathione reductase, but with the expression of selenoprotein P, glutathione peroxidase 3, sirtuin 2, peroxiredoxin 2, and serfiredoxin 1 homolog.

Mitochondrial metabolism in cancer stem cells: a therapeutic target for colon cancer

  • Song, In-Sung;Jeong, Yu Jeong;Han, Jin
    • BMB Reports
    • /
    • 제48권10호
    • /
    • pp.539-540
    • /
    • 2015
  • It has been proposed that the selective elimination of cancer stem cells (CSCs) using targeted therapy could greatly reduce tumor growth, recurrence, and metastasis. To develop effective therapeutic targets for CSC elimination, we aimed to define the properties of CSC mitochondria, and identify CSC-mitochondria-specific targets in colon cancer. We found that colon CSCs utilize mitochondrial oxidative phosphorylation (OXPHOS) to produce ATP. We also found that forkhead box protein 1 (FOXM1)-induced peroxiredoxin 3 (PRDX3) maintains the mitochondrial function, and the FOXM1/PRDX3 mitochondrial pathway maintains survival of colon CSCs. Furthermore, FOXM1 induces CD133 (PROM1/prominin 1) expression, which maintains the stemness of colon CSCs. Together, our findings indicate that FOXM1, PRDX3, and CD133 are potential therapeutic targets for the elimination of CSCs in colon cancer.