• Title/Summary/Keyword: perovskite oxides

Search Result 87, Processing Time 0.165 seconds

Combustion Characteristics of Benzene over $LaMnO_3$ Perovskite-type Catalysts Prepared Using Microwave-assisted Process (마이크로파 공정으로 제조된 $LaMnO_3$ 페롭스카이트형 촉매에서 벤젠의 연소반응)

  • Jung, Won Young;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.507-512
    • /
    • 2013
  • Perovskite-type oxides were successfully prepared using microwave-assisted process, and by XRD, XPS, BET, and $H_2-TPR$. Their catalytic activities for the combustion of benzene were also examined. Most of catalysts studied showed the perovskite crystalline phase with the particle size of 21~35 nm. The $LaMnO_3$ catalyst showed the highest activity and the conversion reached almost 100% at $250^{\circ}C$. The catalysts prepared by microwave-assisted process showed higher activity compared to those prepared sol-gel method. In addition, the catalytic activity was increased with an increase of calcination temperature of $LaMnO_3$-type catalyst. The TPR results on the measurement of redox property showed a good correlation with the order of catalytic activity on the benzene combustion reaction.

Lanthanum Nickelates with a Perovskite Structure as Protective Coatings on Metallic Interconnects for Solid Oxide Fuel Cells

  • Waluyo, Nurhadi S.;Park, Beom-Kyeong;Song, Rak-Hyun;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Lee, Jong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.344-349
    • /
    • 2015
  • An interconnect is the key component of solid oxide fuel cells that electrically connects unit cells and separates fuel from oxidant in the adjoining cells. To improve their surface stability in high-temperature oxidizing environments, metallic interconnects are usually coated with conductive oxides. In this study, lanthanum nickelates ($LaNiO_3$) with a perovskite structure are synthesized and applied as protective coatings on a metallic interconnect (Crofer 22 APU). The partial substitution of Co, Cu, and Fe for Ni improves electrical conductivity as well as thermal expansion match with the Crofer interconnect. The protective perovskite layers are fabricated on the interconnects by a slurry coating process combined with optimized heat-treatment. The perovskite-coated interconnects show area-specific resistances as low as $16.5-37.5m{\Omega}{\cdot}cm^2$ at $800^{\circ}C$.

Reactivity and Preparation of Perovskite-Type Mixed Oxides LaBO3(B = Mn, Fe, Co) by Citrate Sol-Gel Method (Citrate Sol-Gel법에 의한 Perovskite형 복합 산화물 LaBO3(B = Mn, Fe, Co)의 생성 및 환원 반응성)

  • Hwang, Ho Sun;Park, Il Hyeon
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.4
    • /
    • pp.276-282
    • /
    • 1994
  • Perovskite-type mixed oxides LaBO$_3$(B = Mn, Fe, Co) were prepared by citrate sol-gel method in $air(850^{\circ}C$, 24h). The oxygen stoichiometries and structures of these oxides were determined by XRD and TPR results as followings; LaMnO$_{3.16}$(a = 5.507, c = 13.329 $\AA$, hexagonal), LaFeO$_{3.17}$(a = 5.554, b = 5.555, c = 7.863 $\AA$, orthorhomibic), LaCoO$_{3.0}$(a = 5.436, c = 13.095 $\AA$, hexagonal). The temperature programmed reduction(TPR) experiments in static 300 torr H$_2$ atmosphere shows that the reduction reaction of LaBO$_3$(B = Mn, Fe, Co) proceeds into two stages, and thermal stabilities of these oxides decreased in the order of LaMnO$_3$ > LaFeO$_3$ > LaCoO$_3$. According to the kinetic analysis the lowest activation energy was obtained for LaCoO$_3$.

  • PDF

Stoichiometry, Thermal Stability and Reducibility of Perovskite-Type Mixed Oxide LaBO$_3$ (B = Fe, Co, Ni)

  • Park, Il-Hyun;Lee, Hyung-Pyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.5
    • /
    • pp.283-288
    • /
    • 1988
  • The titled properties on reduction of the perovskite $LaBO_3$ (B = Fe, Co, Ni) have been investigated by means of temperature-programmed reduction, isothermal reduction and X-ray diffraction methods. Nominal composition of $LaFeO_{3.18},\;LaCoO_{3.00}\;and\;LaNiO_{2.92}$ are determined. Reduction reaction of these mixed oxides differed according to B-site transition metal and thermal stability on reduction decreased as following order: $LaFeO_{3.18}$ > $LaCoO_{3.00}$ > $LaNiO_{2.92}$. From the results of isothermal reaction, kinetics on reduction of the perovskite has been discussed in detail.

Thick Films of LaNiO3 Perovskite Structure Impregnated with In and Bi Oxides as Acetonitrile Sensor

  • Salker, A.V.;Choi, Nak-Jin;Kwak, Jun-Hyuk;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.298-302
    • /
    • 2004
  • Thick films of $LaNiO_{3}$ having perovskite structure impregnated with indium and bismuth oxides have been used as sensing material for acetonitrile ($CH_{3}CN$) gas. The sensor response for $CH_{3}CN$ is quite good with an excellent recovery for partial pressure from 3 ppm to 20 ppm between 200 and $250^{\circ}C$. $LaNiO_{3}$ alone has exhibited low response, but after impregnation of $In_{2}O_{3}$ and $Bi_{2}O_{3}$ have given increased sensitivity even with 3 ppm partial pressure of $CH_{3}CN$ at $200^{\circ}C$. It is assumed that $CH_{3}CN$ is undergoing oxidation reaction on surface of the film.

Catalytic Reduction of Nitric Oxide by Carbon Monoxide over Perovskite-Type Oxide (페롭스카이트형 산화물에서 일산화탄소에 의한 질소산화물의 환원반응)

  • Moon, Haeng-Chul;Sun, Chang-Bong;Lee, Gun-Dae;Ahn, Byuong-Hyun;Lim, Kwon-Taek;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.407-414
    • /
    • 1999
  • We have studied the reduction of NO by CO over perovskite-type oxides prepared by malic and method. The catalysts were modified to enhance the activity by substitution of metal into A or B site of perovskite oxides. In the $LaCoO_3$ type catalyst, the partial substitution of Sr into A site enhanced the catalytic activity on the conversion of NO at less than $350^{\circ}C$. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$ catalyst, the partial substitution of Fe or Mn into B site enhanced the conversion of NO, but excess amount of Fe decreased the conversion of NO. In addition, $La_{0.6}Sr_{0.4}Co_{0.8}Fe_{0.2}O_3$ mixed with $SnO_2$ or $MnO_2$ showed the synergy effect on the reduction of NO. The introduction of water into reactants feed decreased the catalytic activity but the deactivation was shown to be reversible. The introduction of $SO_2$ into reactants feed also decreased the catalytic activity.

  • PDF

Humidity Effect on the Characteristics of the Proton Conductor Based on the BaR0.5+xTa0.5-xO3-δ (R=Rare Earth) System (BaR0.5+xTa0.5-xO3-δ (R=희토류 금속)계 Proton 전도체 특성에 미치는 수분의 영향)

  • Choi, Soon-Mok;Seo, Won-Sun;Jeong, Seong-Min;Kim, Shin;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.5
    • /
    • pp.290-296
    • /
    • 2008
  • $AB'_{0.5}B"_{0.5}O_3$ type complex perovskite structures which have been reported as proton conductors over $600^{\circ}C$ were studied. The $AB'_{0.5}B"_{0.5}O_3$ type complex perovskite structure is known to be more easily synthesized and has better stability than normal $ABO_3$ perovskite structure. And it is stable at about $800^{\circ}C$ in the $CO_2$ atmosphere, whereas the $BaCeO_3$ perovskite is easily decomposed into carbonate. In addition, this $AB'_{0.5}B"_{0.5}O_3$ type complex perovskite structure could simply produce oxygen vacancies within their structure not by introducing additional doping oxides but by just controling the molar ratio of $B'^{+3}$ and $B"^{+5}$ metal ions in the B site. Hence it is easy to design the structure which shows highly sensitive electrical conductivity to humidity. In this study, the single phase boundary of $BaR_{0.5+x}Ta_{0.5-x}O_{3-{\delta}}$(R = rare earth) complex perovskite structures and it's phase stability were investigated with changes in composition, x. And the humidity dependance of electrical conductivity at different $P_{H2O}$ conditions was investigated.

Comparison of Electrical Conductivities in Complex Perovskites and Layered Perovskite for Cathode Materials of Intermediate Temperature-operating Solid Oxide Fuel Cell (중·저온형 고체산화물 연료전지 공기극 물질로 사용되는 이중층 페로브스카이트와 컴플렉스 페로브스카이트의 전기 전도도 비교)

  • Kim, Jung Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.295-299
    • /
    • 2014
  • Electrical conductivities of complex perovskites, layered perovskite and Sr doped layered perovskite oxides were measured and analyzed for cathode materials of Intermediate Temperature-operating Solid Oxide Fuel Cells (IT-SOFCs). The electrical conductivities of $Sm_{1-x}Sr_xCoO_{3-\delta}$ (x = 0.3 and 0.7) exhibit a metal-insulator transition (MIT) behavior as a function of temperature. However, $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$ (SSC55) shows metallic conductivity characteristics and the maximum electrical conductivity value compared to the values of $Pr_{0.5}Sr_{0.5}CoO_{3-\delta}$ (PSC55) and $Nd_{0.5}Sr_{0.5}CoO_{3-\delta}$ (NSC55). The electrical conductivity of $SmBaCo_2O_{5+\delta}$ (SBCO) exhibits a MIT at about $250^{\circ}C$. The maximum conductivity is 570 S/cm at $200^{\circ}C$ and its value is higher than 170 S/cm over the whole temperature range tested. $SmBa_{0.5}Sr_{0.5}Co_2O_{5+\delta}$ (SBSCO), 0.5 mol% Sr and Ba substituted at the layered perovskite shows a typically metallic conductivity that is very similar to the behavior of the SSC55 cathode, and the maximum and minimum electrical conductivity in the SBSCO are 1280 S/cm at $50^{\circ}C$ and 280 S/cm at $900^{\circ}C$.