4-9

BaPr₀₈Ln₀₂O₃₋₈(Ln=Yb³⁺, Dy³⁺, Gd³⁺, Sm³⁺, Nd³⁺)계 perovskite 산화물의 생성상, 전기전도도 및 수송율

Phase Analysis, Electrical Conductivity and Transport Number of BaPr_{0.8}Ln_{0.2}O_{3-δ}(Ln=Yb³⁺, Dy³⁺, Gd³⁺, Sm³⁺, Nd³⁺) perovskite oxides <u>박형경</u>, 최순목, 김 신*, 이홍림 연세대학교 세라믹공학과, *연세대학교 산업기술연구소

BaPrO₃계 페롭스카이트 구조 산화물은 저온에서도 높은 전기전도도를 나타낸다고 보고되었다. 이 BaPrO₃계 산화물의 Pr⁴⁺이온자리에 다양한 비율의 Yb³⁺을 첨가한 경우의 전기전도도를 살펴본 결과, 20mol%의 Yb³⁺을 첨가한 조성의 경우에 가장 높은 전기전도도를 나타내었으나 전도종에 대한 구체적인 분석은 이루어지지 않았다 따라서 이번 연구에서는 Pr⁴⁺이온자리에 첨가한 양이온의 양을 20mol%로 고정시키고, 첨가제로서 Yb³⁺이외에 이온반경이 더 큰 양이온(Dy³⁺, Gd³⁺, Sm³⁺, Nd³⁺)들을 Pr⁴⁺이온자리에 첨가하여 소결체의 생성상을 분석하였다. 또한 단일상이 얻어진 조성에 대한 전기전도도를 살펴보았으며 수송율 평가를 통해 전기전도도에 기여하는 전도종을 분석하였다.

〈4-10〉

Luminescence and Decay behaviors of Tb-doped Yttrium Silicate

<u>최윤영*</u>, 손기선, 박희동, 최세영* 한국화학연구소, *연세대학교 세라믹공학과

The photoluminescence (PL) of Terbium activated yttrium silicate with the general formula $Y_{2-X}Tb_X(S_1O_4)O$ was investigated as a function of Tb^{3+} concentration. Especially, the main attention is focused on the 5D_3 fluorescence and its energy transfer behavior. The emission and excitation spectra were measured in terms of Tb^{3+} concentration and analyzed. Diffuse reflectance spectra were also measured and analyzed in range from. VUV to UV. As a result, yttrium silicate was found to have a broad excitation band extended from VUV to UV range and the concentration quenching was estimated both for 5D_3 and 5D_4 fluorescence. The energy transfer was investigated by analyzing the decay curve of 5D_3 emission based on the multipolar interaction. The decay curves of 5D_3 emission, for which well known cross relaxation has been accepted as a main factor, were analyzed by Inokuti and Hirayama's formula based on the direct quenching scheme. Furthermore, the rate equations including a newly proposed quenching scheme, for which emission quenching is due to the two types of cross relaxation from 5D_3 or 5D_4 to 7D and CTB in associated with inter-center migration, were taken into consideration.