• Title/Summary/Keyword: permissible exposure limit

Search Result 40, Processing Time 0.023 seconds

Comparison of Notation Items for Chemical Occupational Exposure Limits (화학물질에 대한 직업적 노출기준의 표기 항목 비교)

  • Phee, Young Gyu;Kim, Seung Won;Ha, Kwonchul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.2
    • /
    • pp.226-235
    • /
    • 2020
  • Objectives: This study was to investigate the signs and notations of skin absorption, carcinogenicity, germ cell mutagenicity, and reproductive toxicity in the occupational exposure limits of Korea and of other advanced countries. Methods: Information on occupational exposure limits in Korea, the USA, the UK, Germany, and Japan was investigated through the Internet, and items marked as carcinogenicity and skin absorption were compared by country. Results: Legal occupational exposure limits have been greatly simplified. However, in the case of HSE WEL, skin absorption, carcinogenicity classification, sensitization, and in the case of DFG MAK, skin absorption, carcinogenicity, pregnancy risk group, germ cell mutagenicity, airway and skin sensitization, photo contact sensitization, and vapor pressure were provided. Conclusions: It is desirable to indicate the carcinogenicity and skin absorption within permissible limits, and to include information on critical effects in chemical substance exposure limits to uphold the right to know of industrial hygienists and workers in Korea. It is also necessary to clarify the precautions, limitations and protections for skin absorption.

Relationship between Exposure Concentrations to Methylene Chloride in Air and Carboxyhemoglobin Levels in Blood of Workers Engaged in Blowing, and Cleaning Operations (발포 및 세척 공정 근로자의 공기중 Methylene Chloride 노출 농도와 혈중 Carboxyhemoglobin 수준간의 상관관계에 관한 연구)

  • Shin, Yong Chul;Kim, Yang Ho;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.87-98
    • /
    • 1999
  • The objectives of this study were to evaluate exposures to airborne methylene chloride and postshift carboxyhemoglobin (COHb) in blood of workers engaged in processes using blowing or cleaning agents, and to investigate correlation between methylene chloride concentrations and the blood COHb levels of workers. The geometric mean (GM) of workers' exposures (8 hour-time weighted averages, TWA) to airborne methylene chloride during cleaning molds using rags wetted with the solvent in the manufacture of flexible polyurethane foam (GM = 61.4 ppm), during operating the dip tank for cleaning molds in the manufacture of lens (GM = 61.0 ppm), and during cleaning the blowing nozzles by spraying the solvent in the manufacture of shoes (GM = 117.2 ppm) were exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value ($TLV^{(R)}$)-Time Weighted Average (TWA) (50 ppm). The COHb levels were significantly different among groups (p<0.05). The average COHh levels in blood of non-smoking workers were 2.0% in. low-level (<50 ppm) exposure group, and 3.9 % in high-level (>50ppm) exposure group. The average COHb levels in smoking workers were 3.1% in low-level exposure group, and 4.8% in high-level exposure group. The blood COHb levels of no-exposed workers to methylene chloride were 1.8% in non-smoking group, and 2.8% in smoking group. It was found that the COHb level dependeds on the methylene chloride concentration and smoking habit, and was highly correlated with methylene chloride concentration in air. The correlation coefficient was 0.81 among non-smoking workers. The estimated COHb level (3.6%) and 95% upper confidence limit (4.0%) corresponding to TLV-TWA of methylene chloride exceeded the current ACGIH Biological Exposure Index (COHb 3.5%) for carbon monoxide. The estimated COHb level (5.4%) at 100 ppm exceeded the standard (5%) recommended by National Institute for Occupational Safety and Health (NIOSH) for preventing adverse cardiovascular effect. The estimated COHb value and 95% upper confidence limit at 25 ppm of the Occupational Safety and Health. Adminstration (OSHA) Permissible Exposure Limit-TWA (PEL-TWA) were 2.6% and 3.0%, respectively. It is suggested that COHb in blood be kept below 3.0% to comply with OSHA PEL-TWA.

  • PDF

Workers' Exposure to Airborne Methyl Bromide in the Exporting/Importing Plants and Products Quarantine Company (수출입 식물검역업체 근로자의 공기 중 Methyl Bromide 노출에 관한 연구)

  • Lee, Hyun Seok;Shin, Yong Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.1
    • /
    • pp.32-40
    • /
    • 2008
  • Methyl bromide has been used as a representative fumigant for quarantine, and several poisoning cases have occurred recently by this chemical in Korea. The purpose of this study is to evaluate workers' exposures to airborne methyl bromide in the importing and exporting plant products quarantine companies. Air samples were collected 400/200 mg Anasorb 747TM and were analyzed by gas chromatograph /flame ionization detector according to the Occupational Safety and Health Agency (OSHA) Method PV2040. Geometric mean (GM) and arithmetic mean (AM) of total 27 workers' exposure concentrations to airborne methyl bromide were 1.12 ppm and 0.24 ppm, respectively. Two exposures(12.1 ppm and 12 ppm as 8hr-TWA) of total 27 workers' exposures exceeded the Korean standard (5 ppm) of Ministry Labor, while 4 exposures (15%) exceeded the Threshold Limit Value (TLV) (1 ppm) of American Conference of Governmental Industrial Hygienists (ACGIH). Seven samples (11%) of total 63 short-term air samples exceeded the OSHA Permissible Exposure Limit (PEL) 20 ppm (Ceiling). The opening (management) task in wood fumigation by tent showed the highest short-term exposure concentrations (AM: 18.6 ppm, GM: 0.58 ppm, maximum: 340.7 ppm). The maximum level in treatment task of the same process was 2.01 ppm. Methyl bromide concentrations in opening operation was significantly higher than that in treatment operation (p<0.05). In conclusion, the GM of workers' 8hr-TWA exposures to airborne methyl chloride in the importing/exporting plant quarantine industry was estimated below the ACGIH TLV (1 ppm). However, opening task in the fumigation of wood being covered with tent or fumigation of pant products in container showed the levels exceeding ACGIH TLV (1 ppm), and opening task in the fumigation of wood being covered with tent showed the level exceeding the Korean standard of Ministry of Labor (5 ppm).

BENZENE AND LEUKEMIA An Epidemiologic Risk Assessment

  • Rinsky Robert A.;Smith Alexander B.;Hornung Richard;Filloon Thomas G.;Young Ronald J.;Okun Andrea H.;Landrigan Philip J.
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02a
    • /
    • pp.651-657
    • /
    • 1994
  • To assess quantitatively the association between benzene exposure and leukemia, we examined the mortality rate of a cohort with occupational exposure to benzene. Cumulative exposure for each cohort member was estimated from historical air-sampling data and, when no sampling data existed, from interpolation on the basis of existing data. The overall standardized mortality ratio (a measure of relative risk multiplied by 100) for leukemia was 337 (95 percent confidence interval, 154 to 641), and that for multiple myeloma was 409 (95 percent confidence interval, 110 to 1047). With stratification according to levels of cumulative exposure, the standardized mortality ratios for leukemia increased from 109 to 322, 1186, and 6637 with increases in cumulative benzene exposure from less than 40 parts per million-years (ppm-years), to 40 to 199, 200 to 399, and 400 or more. respectively. A cumulative benzene exposure of 400 ppm years is equivalent to a mean annual exposure of 10 ppm over a 40-year working lifetime; 10 ppm is the currently enforceable standard in the United States for occupational exposure to benzene. To examine the shape of the exposure-response relation, we performed a conditional logistic-regression analysis, in which 10 controls were matched to each cohort member with leukemia. From this model, it can be calculated that protection from benzene induced leukemia would increase exponentially with any reduction in the permissible exposure limit.

  • PDF

A Study on the Evaluation of the Boarding Environment for the Ship Vibration (on the Basis of ISO-6954 : 2000(E)) (선박의 선내 진동에 의한 승선 환경 평가에 관한 연구 (ISO-6954 : 2000(E)의 평가방법에 기초))

  • Yu, Young-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.4
    • /
    • pp.107-112
    • /
    • 2007
  • The vibration generated on shipboard is very important because it greatly affects on the comfortable mind of passenger and working conditions of crews. Shipboard vibration is closely concerned with the development of propulsion method and the type of main engine to decide speed of ship. To make the propulsion power, the main engine of ship have continuous explosion process in engine room, so the shipboard vibration is generated. The shipboard vibration causes the physiological and psychological damages to human body. In the case of the human body exposed to the shipboard vibration, the evaluation of human exposure to whole-body vibration is prescribed in ISO 6954 : 2000(E). In this paper, to evaluate the shipboard working environment, two kinds of vibration levels onboard ship were measured and compared with one another between engine rooms, engine control rooms and wheel house by the regulation of ISO 6954 : 2000(E).

  • PDF

An Evaluation of Working Environment of the Ship Vibration by ISO Regulation (ISO규정에 의한 선박의 선내진동과 승선근무 환경평가)

  • Yu, Young-Hun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.139-144
    • /
    • 2007
  • The vibration generated on shipboard is very important because it is greatly affect on the comfortable mind of passenger and working conditions et crews. Shipboard vibration is closely concerned with the development of propulsion method tint is main engine to decide speed of ship. To make the propulsion power, the main engine of ship engine room have continuous explosion process, so the shipboard vibration is generated The physiological damage and psychological damage of human body have caused by the vibration et shipboard In the case of the human body is exposed to the shipboard vibration, the evaluation of human exposure to whole-body vibration is prescribed in ISO 6954: 2000(E). In this paper, to evaluate the shipboard working environment, the vibration levels of two kinds of ship onboard were measured and compared with engine rooms, engine control rooms and bridges by the regulation of ISO 6954: 2000(E)

  • PDF

Assessment of Airborne Welding Fume Concentration for Some Manufacturing Industries in Busan

  • Cha, Min-Ho;Kim, Jeong-Won;Kim, Jong-Eun;Cho, Young-Ha;Moon, Deog-Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.6
    • /
    • pp.506-512
    • /
    • 2007
  • This study was conducted to describe the exposure levels of welding fumes by the type of manufacturers, work process, welding type and the size of manufacturers, and to find out the trend of chronological changes of airborne welding fume levels. The subjects of this study were 509 manufacturers, consisting of 11 types of manufacturers, 3 work processes, 7 welding types, in Busan from January, 1997 to December, 2005. Airborne concentration of welding fume was determined by manual of National Institute for Occupational Safety and Health (NIOSH), and the data were analyzed by using SPSS 10.0 for Windows program. The mean concentration of airborne welding fume in all manufacturers was $1.29\;mg/m^3$ (Range: $0.01{\sim}3.00\;mg/m^3)$. The level of welding fume was the highest, as $1.96\;mg/m^3$, for manufactures of motor vehicles, trailers and semi-trailers, which was lower than $5.0\;mg/m^3$ of 8 hr-TWA in Korean permissible exposure limit for welding fume. There was a significant difference in the mean levels of welding fumes by work process, showing the highest in welding workshop ($1.39\;mg/m^3$), followed by pipeline welding workshop ($1.26\;mg/m^3$) and engineering workshop ($1.20\;mg/m^3$). Among welding types, the mean level of welding fume was the highest in the type of $CO_2$ & arc welding, as $1.46\;mg/m^3$, followed by $CO_2$ welding ($1.40\;mg/m^3$), shielded metal arc welding ($1.31\;mg/m^3$), spot welding ($1.27\;mg/m^3$), and so on. The highest mean level of welding fume was $1.58\;mg/m^3$ in work process of pipe line welding workshop for the manufacturers of basic iron and steel, and $2.27\;mg/m^3$ in the type of arc welding for the manufactures building ship and boats. By the size of manufacturers, the mean concentration of welding fume for manufactures in small scale with less than 50 workers was the highest as $1.45\;mg/m^3$ (Range: $0.07{\sim}3.00\;mg/m^3)$. The mean level of welding fume was the highest as $1.39\;mg/m^3$ both in 1997 and in 2005, showing a trend of fluctuating periodically within a range of $1.10{\sim}1.39\;mg/m^3$. The above results suggested that more effective control program for work environment producing welding fumes should be developed and applied since there were significant variations in welding fume levels by the type of manufacturers, work processes, welding types, the size of manufactures, and by year.

Safety and Risk Assessment of 3-Monochloro-1,2-propanediol (3-MCPD) (3-Monochloro-1,2-propanediol(3-MCPD)의 안전성 및 위해성 평가)

  • 이병무
    • Toxicological Research
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • 3-Monochloro-1,2-propanediol(3-MCPD) is currently being a matter of concern because of its toxicity. 3-MCPD produced during the acid hydrolysis of soybean products has been reported to be mutagenic, neurotoxic, nephrotoxic and spermatotoxic. Howerer, the carcinogenicity of 3-MCPD is a controversial issue over the past several decades. 3-MCPD characteristically showed a variety of toxicities in reproductive system such as, decrease in sperm number and sperm motility, infertility, loss of sperm function, and weight decrease in ovary. Due to the toxicity of 3-MCPD, exposure to 3-MCPD has been proposed to be reduced to as low a level as technologically feasible. 3-MCPD can be detected in soy sauce or non-soy sauce products. The legal limit for 3-MCPD this year has been suggested to be 20 ppb($\mu\textrm{g}$/kg)in the European Community. In Korea, the permissible level of 3-MCPD is expected to be 0.3 ppm. In this study, 3-MCPD was toxicologically evaluated in terms of risk assessment in humans.

Assessment of occupational radiation exposure of NORM scales residues from oil and gas production

  • EL Hadji Mamadou Fall;Abderrazak Nechaf;Modou Niang;Nadia Rabia;Fatou Ndoye;Ndeye Arame Boye Faye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1757-1762
    • /
    • 2023
  • Radiological hazards from external exposure of naturally occurring radioactive materials (NORM) scales residues, generated during the extraction process of oil and gas production in southern Algeria, are evaluated. The activity concentrations of 226Ra, 232Th, and 40K were measured using high-purity gamma-ray spectrometry (GeHP). Mean activity concentration of 226Ra, 232Th and 40K, found in scale samples are 4082 ± 41, 1060 ± 38 and 568 ± 36 Bq kg-1, respectively. Radiological hazard parameters, such as radium equivalent (Raeq), external and internal hazard indices (Hex, Hin), and gamma index (Iγ) are also evaluated. All hazard parameter values were greater than the permissible and recommended limits and the average annual effective dose value exceeded the dose constraint (0.3 mSv y-1). However, for occasionally exposed workers, the dose rate of 0.65 ± 0.02 mSv y-1 is lower than recommended limit of 1 mSv y-1 for public.

Occupational radiation exposure control analyses of 14 MeV neutron generator facility: A neutronic assessment for the biological and local shield design

  • Swami, H.L.;Vala, S.;Abhangi, M.;Kumar, Ratnesh;Danani, C.;Kumar, R.;Srinivasan, R.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1784-1791
    • /
    • 2020
  • The 14 MeV neutron generator facility is being developed by the Institute for Plasma Research India to conduct the lab scale experiments related to Indian breeding blanket system for ITER and DEMO. It will also be utilized for material testing, shielding experiments and development of fusion diagnostics. Occupational radiation exposure control is necessary for the all kind of nuclear facilities to get the operational licensing from governing authorities and nuclear regulatory bodies. In the same way, the radiation exposure for the 14 MeV neutron generator facility at the occupational worker area and accessible zones for general workers should be under the permissible limit of AERB India. The generator is designed for the yield of 1012 n/s. The shielding assessment has been made to estimate the radiation dose during the operational time of the neutron generator. The facility has many utilities and constraints like ventilation ducts, accessible doors, accessibility of neutron generator components and to conduct the experiments which make the shielding assessment challenging to provide proper safety for occupational workers and the general public. The neutron and gamma dose rates have been estimated using the MCNP radiation transport code and ENDF -VII nuclear data libraries. The ICRP-74 fluence to dose conversion coefficients has been used for the assessment. The annual radiation exposure has been assessed by considering 500 h per year operational time. The provision of local shield near to neutron generator has been also evaluated to reduce the annual radiation doses. The comprehensive results of radiation shielding capability of neutron generator building and local shield design have been presented in the paper along with detailed maps of radiation field.