• 제목/요약/키워드: permeation mechanism

검색결과 92건 처리시간 0.021초

케토프로펜의 피부투과도를 증진시키는 다양한 용매의 작용기전 (Mechanism of Action of Various Vehicles That Enhance the Permeation of Ketoprofen)

  • 조영주;최후균
    • Journal of Pharmaceutical Investigation
    • /
    • 제28권3호
    • /
    • pp.165-169
    • /
    • 1998
  • The effect of various vehicles on the permeation of a model drug, ketoprofen in solution formulation was evaluated using a flow-through diffusion cell system at $37^{\circ}C$. To investigate the mechanism of permeation rate enhancement, the effects of pretreatment with various vehicles on the permeation of the drug were evaluated using 5 mg/ml solution and saturated solution. The order of permeation rate of ketoprofen across hairless mouse skin after pretreatment with various vehicles was similar to the case where the vehicles and the drug were coadministered except ethanol and oleic acid. The results indicate that the mechanism of enhancement can be direct action of the vehicles on the barrier property of the skin and/or carrier mechanism.

  • PDF

Effect of Polyoxyethylene Alkyl Esters on Permeation Enhancement and Impedance of Skin

  • Kim, Hee-Sun;Oh, Seaung-Youl
    • Biomolecules & Therapeutics
    • /
    • 제19권1호
    • /
    • pp.109-117
    • /
    • 2011
  • In this work, we have investigated the effect of polyoxyethylene alkyl ester nonionic surfactants on percutaneous permeation enhancement of a model drug, ketoprofen. We also investigated the mechanism involved in the enhancement using impedance and solubility measurement. Three groups of nonionic surfactants with different ethylene oxide content were studied. The permeation results showed that all surfactants enhanced the percutaneous absorption, irrespective of the molecular weight. The permeation results from PEG-45 monostearate (PEGMS45) were rather unexpected. Impedance and solubility results indicate that the mechanism involved in the enhancement of permeation by PEG-10 monooleate (PEGMO10) and PEGMS45 is rather different. The results from PEGMS45 suggest that it could be a potential candidate as a skin penetration enhancer with high molecular weight, which may poses less skin irritation and systemic side effect than the smaller surfactant molecules. Overall, this work provided some useful information on percutaneous transport enhancement and the mechanistic insights involved in skin permeation for these nonionic surfactants.

기체투과에 의한 Silicone Rubber Membrane의 기능성 시험 (Performance Test of Silicone Rubber Membrane by Gas Permeation Method)

  • 이승범;홍인권
    • Elastomers and Composites
    • /
    • 제33권1호
    • /
    • pp.37-43
    • /
    • 1998
  • The permeation of gas through polymer membrane at temperatures above its glass transition, generally occurs by a solution-diffusion mechanism. This mechanism is performed by the affinity difference between polymeric materials and gas molecules, and various technologies, such as copolymerization, impregnation and so on, have been researched to improve the affinity of polymeric material for the gases. In this study, permeability and selectivity for some gases were obtained from steady-state rates of gas permeation through silicone rubber membrane which is prepared by supercritical fluid extraction method. The permeability was measured by the volumetric method proposed by Barrer. Permeability was increased generally with temperature and permeation pressure. Silicone rubber membrane shows a higher permeability to $CO_2$ than to $O_2$, $N_2$. This results probably reflect the relatively high solubility of CO_2 in silicone rubber membrane, which is due to the affinity of $CO_2$ molecules. Since separation powers of $CO_2/N_2$, $CO_2/O_2$ were more than 200, and 100, respectively, it is able to separate $CO_2$ from the air, and the optimum temperature and pres-sure was 328.15 K, 60 cmHg respectively. In future, it is possible that the silicone rubber membrane can be used for separation or concentration of $CO_2$ through experiment for mixed gas separation.

  • PDF

팔라듐 얇은 막의 수소 투과에 대한 제일 원리 계산 (Ab-initio Study of Hydrogen Permeation though Palladium Membrane)

  • 차필령;김진유;석현광;김유찬
    • 대한금속재료학회지
    • /
    • 제46권5호
    • /
    • pp.296-303
    • /
    • 2008
  • Hydrogen permeation through dense palladium-based membranes has attracted the attention of many scientists largely due to their unmatched potential as hydrogen-selective membranes for membrane reactor applications. Although it is well known that the permeation mechanism of hydrogen through Pd involves various processes such as dissociative adsorption, transitions to and from the bulk Pd, diffusion within Pd, and recombinative desorption, it is still unclear which process mainly limits hydrogen permeation at a given temperature and hydrogen partial pressure. In this study, we report an all-electron density-functional theory study of hydrogen permeation through Pd membrane (using VASP code). Especially, we focus on the variation of the energy barrier of the penetration process from the surface to the bulk with hydrogen coverage, which means the large reduction of the fracture stress in the brittle crack propagation considering Griffith's criterion. It is also found that the penetration energy barrier from the surface to the bulk largely decreases so that it almost vanishes at the coverage 1.25, which means that the penetration process cannot be the rate determining process.

양극산화에 의한 다공성 알루미나 막의 기체투과 특성 (Gas Permeation Characteristics of Porous Alumina Membrane Prepared by Anodic Oxidation)

  • 함영민
    • 환경위생공학
    • /
    • 제13권3호
    • /
    • pp.72-78
    • /
    • 1998
  • For investigation into gas permeation characteristics, the porous alumina membrane with asymmetrical structure, having upper layer with 10 nanometer under of pore diameter and lower layer with 36 nanometer of pore diameter, was prepared by anodic oxidation using DC power supply of constant current mode in an aqueous solution of sulfuric acid. The aluminium plate was pre-treated with thermal oxidation, chemical polishing and electrochemical polishing before anodic oxidation. Because the pore size depended upon the electrolyte, electrolyte concentration, temperature, current density, and so on, the the membranes were prepared by controling the current density, as a very low current density for upper layer of membrane and a high current density for lower layer of membrane. By control of current quantity, the thicknesses of upper layer of membranes were about $6{\;}{\mu}m$ and the total thicknesses of membranes were about $80-90{\;}{\mu}m$. We found that the mechanism of gas permeation depended on model of the Knudsen flow for the membrane prepared at each condition.

  • PDF

Percolation Approach to the Morphology of Rigid-Flexible Block Copolymer on Gas Permeability

  • 박호범;하성룡;이영무
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1997년도 추계 총회 및 학술발표회
    • /
    • pp.69-70
    • /
    • 1997
  • Polyimides and related polymers, when synthesized from aromatic monomers, have generally rigid chain structures resulting in a low gas permeability. The rigidity of polymer chains reduces the segmental motion of chains and works as a good barrier against gas transport. To overcome the limit of use as materials of gas separation membranes due to low gas permeability, block copolymers with the incorporation of flexible segments like siloxane linkage and ether linkage have been studied. These block copolymers have microphase-separated structures composed of microdomains of flexible poly(dimethylsiloxane) or polyether segments and of rigid polyimides segments. In case of rigid-flexible block copolymers, the characteristics of both phases for gas permeation are of great difference. The permeation of gas molecules occurs favorably through microdomains of flexible segments, whereas those of rigid segments hinder the permeation of gas molecules. Accordingly the increase of content of flexible segments in a rigid polymer matrix will increase the gas permeability of the membrane linearly. However, this prediction does not satisfy enough many experimental results and in particular the drastic increase of the permeability is observed in a certain volume fraction. It was proposed that the gas transport mechanism is dominated by diffusion rather than gas solubility in a certain content of flexible phase if solution-diffusion mechanism is adopted. However, the transition from solubility-dependent to diffusion-dependent cannot be explained by the understanding of mechanism itself. Therefore, we consider an effective chemical path which permeable phase can form in a microheterogenous medium, and percolation concept is introduced to describe the permeability transition at near threshold where for the first time a percolation path occurs. The volume fraction of both phases is defined as V$_{\alpha}$ and V$_{\beta}$ in block copolymers, and the volume of $\beta$ phase in the threshold forming geometrically a traversing channel is defined as V$_{\betac}$. The formation mechanism of shortest chemical channel is schematically depicted in Fig. 1.

  • PDF

An Overview on Hydrogen Uptake, Diffusion and Transport Behavior of Ferritic Steel, and Its Susceptibility to Hydrogen Degradation

  • Kim, Sung Jin;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • 제16권4호
    • /
    • pp.209-225
    • /
    • 2017
  • Development of high strength steel requires proper understanding of hydrogen behavior since the higher the steel strength the greater the susceptibility of hydrogen assisted cracking. This paper provides a brief but broad overview on hydrogen entry and transport behavior of high-strength ferritic steels. First of all, hydrogen absorption, diffusion and trapping mechanism of the steels are briefly introduced. Secondly, several experimental methods for analyzing the physical/chemical nature of hydrogen uptake and transport in the steels are reviewed. Among the methods, electrochemical permeation technique utilized widely for evaluating the hydrogen diffusion and trapping behavior in metals and alloys is mainly discussed. Moreover, a modified permeation technique accommodating the externally applied load and its application to a variety of steels are intensively explored. Indeed, successful utilization of the modified permeation technique equipped with a constant load testing device leads to significant academic progress on the hydrogen assisted cracking (HAC) phenomenon of the steels. In order to show how the external and/or residual stress affects mechanical instability of steel due to hydrogen ingress, the relationship among the microstructure, hydrogen permeation, and HAC susceptibility is briefly introduced.

니켈 지지체를 이용한 바나듐기 분리막의 수소 투과특성 (Effects of Nickel Supports on Hydrogen Permeability of Vanadium based Membrane)

  • 조경원;최재하;정석;김경일;홍태환;안중우
    • 한국수소및신에너지학회논문집
    • /
    • 제24권3호
    • /
    • pp.200-205
    • /
    • 2013
  • The separation of hydrogen depends on porosity, diffusivity and solubility in permeation membrane. Dense membrane is always showing a solution diffusion mechanism but porous membrane is not showing. Therefore, porous membrane has a good hydrogen flux due to pore is carried out transferred media. This mechanism is named as the Knudsen diffusion. Hydrogen molecules or hydrogen atoms are diffused along pore that is a mean free path. In this study, complex layer hydrogen permeation membrane was fabricated by hot press process. And then, it was evaluated and calculated to relationship between hydrogen permeability and membrane porosity.

PVC/PS 혼합 수면 전개 적층막의 기체투과 특성 (Gas Permeation Characteristics of PVC/PS Blend Laminated Membranes Prepared by Water Casting)

  • 남석태;최호상;김병식
    • 멤브레인
    • /
    • 제3권3호
    • /
    • pp.108-116
    • /
    • 1993
  • 수면전개 혼합적층막의 기체투과계수는 PS의 혼합비율이 증가함에 따라, 분리계수는 PVC의 환합비율이 증가함에 따라 증가하였다. 기체투과기구는 PS의 혼합비율이 감소함에 따라 Poiseuile-Knudsen 모델에서 solution-diffusion모델로 전이하였다. 한편 혼합박막의 구조는 공기면측에 소수성의 PS가, 수면측에는 친수성인 PVC가 배향된 직렬혼합구조였으며, 기체투과거동은 series model을 따랐다.

  • PDF

Nanofiltration of Electrolytes with Charged Composite Membranes

  • Choi, J.H.;Yeom, C.K.;Lee, J.M.;Suh, D.S.
    • 멤브레인
    • /
    • 제13권1호
    • /
    • pp.29-36
    • /
    • 2003
  • A characterization of the permeation and separation using single salt solution was carried out with charged composite membranes. Various charged composite membranes were fabricated by blending an ionic polymer with a nonionic polymer in different ratios. In this study, sodium alginate, chitosan and poly(vinyl alcohol) were employed as anionic, cationic and nonionic polymers, respectively. The permeation and separation behaviors of the aqueous salt solutions have been investigated through the charged composite membranes with various charge densities. As the content of the ionic polymer increased in the membrane, the hydrophilicity of the membrane increased, and pure water flux and the solution flux increased correspondingly, indicating that the permeation performance through the membrane is determined mainly by its hydrophilicity. Electrostatic interaction between the charged membrane and ionic solute molecules, that is, Donnan exclusion, was observed to be attributed to salt rejection to a greater extent, and molecular sieve mechanism was effective for the separation of salts under a similar electrostatic circumstance of solutes.