• Title/Summary/Keyword: permeation flow

Search Result 121, Processing Time 0.024 seconds

Development of Transdermal Drug Delivery System for the Combination of Physostigmine and Procyclidine

  • Park, Soon-Cheol;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.3
    • /
    • pp.181-184
    • /
    • 2001
  • The purpose of this study was to develop transdermal drug delivery system (TDDS) for the combination of physostigmine and procyclidine. The effects of various pressure sensitive adhesives (PSA) on the percutaneous absorption of procyclidine across hairless mouse skin were evaluated to select an appropriate PSA. In addition, the influences of various vehicles on the percutaneous absorption of procyclidine from PSA matrix across hairless mouse skin were evaluated using flow-through diffusion cell system at $37^{\circ}C$. Physostigmine did not have any influence on the permeation rate of procyclidine. The flux of procyclidine was the highest in silicone and PIB and was relatively lower in SIS, Acryl, and SBS adhesive matrices, however, their use was limited by the crystallization of the drug in the matrix. Among acrylic adhesives, the permeability of procyclidine was the highest from poly (ethylene oxide) grafted acrylic adhesive. Some enhancers show different enhancing effect depending on the drug, however, many of the tested enhancers showed enhancing effect for the permeation of both procyclidine and physostigmine to some extent. $Crovol^{\circledR}$ EP 40 showed the highest enhancing effect on the permeation of both compounds. The size of TDDS to provide required permeation rate was estimated to be $35\;cm^2$ based on available information.

  • PDF

Preparation, Characterization, and Gas Permeation Properties of Carbon Molecular Sieve Membranes Derived from Dense P84-Polyimide Film

  • Park, Ho-Bum;Nam, Sang-Yong;Jang, Jeong-Gyu;Lee, Young-Moo
    • Korean Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.25-35
    • /
    • 2002
  • The gas permeation properties have been studied on carbon molecular sieve (CMS) membranes prepared by pyrolysis of P84 polyimide under various conditions. P84 polyimide shows high permselectivities (O$_2$/N$_2$= 9.17 and CO$_2$/N$_2$= 35) for various gas pairs and has a good processibility because it is easily soluble in high polar solvents such as N-methylpyrrolidinone (NMP), dimethylformamide (DMF), and N,N-dimethylacetamide (DMAc). After pyrolysis under Ar flow, the change in the heating rate was found to affect the gas permeation properties to some extent. The permeabilities of the selected gases were shown to be in the order He > CO$_2$> O$_2$> N$_2$for all the CMS membranes, whose order was in accordance with the order of kinetic gas diameters. It also revealed that the pyrolysis temperature considerably influenced the gas permeation properties of the CMS membranes derived from P84 polyimide. The CMS membranes pyrolized at 700$\^{C}$ temperature exhibited the highest permeability with relatively targe loss in permselectivity. This means that the pyrolysis temperature should be varied in accordance with target gases to be separated.

Effect of Permeability Anisotropy on the Effective Radius of Grout Bulb in Horizontal Permeation Grouting - Numerical Study (투수계수 이방성을 고려한 수평 약액 그라우트 구근의 침투 유효 반경에 관한 수치해석적 연구)

  • Baek, Seung-Hun;Joo, Hyun-Woo;Kwon, Tae-Hyuk;Han, Jin-Tae;Lee, Ju-Hyung;Yoo, Wan-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.149-156
    • /
    • 2020
  • Permeation grouting effectively enhances soil strength and decreases permeability of soil; however, the flow of grout is heavily affected by anisotropy of hydraulic conductivity in layers. Therefore, this study investigates the effect of permeability anisotropy on the effective radius of horizontal permeation grout using computational fluid dynamics (CFD). We modeled the horizontal permeation grout flow as a two-phase viscous fluid flow in porous media, and the model incorporated the chemical diffusion and the viscosity variation due to hardening. The numerical simulation reveals that the permeability anisotropy shapes the grout bulb to be elliptic and the dissolution-driven diffusion causes a gradual change in grout pore saturation at the edge of the grout bulb. For the grout pore saturations of 10%, 50% and 90%, the horizontal and vertical radii of grout bulb are estimated when the horizontal-to-vertical permeability ratio varies from 0.01 to 100, and the predictive model equations are suggested. This result contributes to more efficient design of injection strategy in formation layers with permeability anisotropy.

Development of a Numerical Model for Cake Layer Formation Process on Membrane (멤브레인 케이크 레이어 형성 과정 모사를 위한 수치 모델의 개발)

  • Kim, Kyung-Ho;Shin, Jae-Ho;Lee, Sang-Hwan;Lee, Ju-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.35-44
    • /
    • 2011
  • Membrane filtration has become firmly established as a primary process for ensuring the purity, safety and efficiency of treatment of water or effluents. Several researches have been performed to develop and design membrane systems in order to increase the accuracy and performance of the processes. In this study, a lattice Boltzmann method for the cake layer has been developed using particle dynamics based on an immersed boundary method and the cake layer formation process on membrane has been numerically simulated. Case studies including various particle sizes were also performed for a microfiltration process. The growth rate of the cake layer thickness and the permeation flow rate along the membranes were predicted. The results of this study agreed well with that of previous experiments. Effects of various particle diameters on the membrane performance were studied. The cake layer of a large particle tended to be growing fast and the permeation flow going down rapidly at the beginning. The layer thickness of a small particle increased constantly and the flow rate was smaller than that of the large particle at the end of simulation time.

Modulation of Electroosmotic Flow through Skin: Effect of Poly(Amidoamine) Dendrimers

  • Kim, Hye Ji;Oh, Seaung Youl
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.182-190
    • /
    • 2018
  • The objective of this work is to evaluate the effect of polyamidoamine (PAMAM) dendrimers on electroosmotic flow (EOF) through skin. The effect of size and concentration of dendrimer was studied, using generation 1, 4 and 7 dendrimer (G1, G4 and G7, respectively). As a marker molecule for the direction and magnitude of EOF, a neutral molecule, acetoaminophen (AAP) was used. The visualization of dendrimer permeation into the current conducting pore (CCP) of skin was made using G4-fluorescein isothiocyanate (FITC) conjugate and confocal microscopy. Without dendrimer, anodal flux of AAP was much higher than cathodal or passive flux. When G1 dendrimer was added, anodal flux decreased, presumably due to the decrease in EOF by the association of G1 dendrimer with net negative charge in CCP. As the generation increased, larger decrease in anodal flux was observed, and the direction of EOF was reversed. Small amount of methanol used for the preparation of dendrimer solution also contributed to the decrease in anodal flux of AAP. Cross-sectional view perpendicular to the skin surface by confocal laser scanning microscope (CLSM) study showed that G4 dendrimer-FITC conjugate (G4-FITC) can penetrate into the viable epidermis and dermis under anodal current. The permeation route seemed to be localized on hair follicle region. These results suggest that PAMAM dendrimers can permeate into CCP and change the magnitude and direction of EOF. Overall, we obtained a better understanding on the mechanistic insights into the electroosmosis phenomena and its role on flux during iontophoresis.

A Permeation Behavior for the Pervaporation of Aqueous Ethanol Solution (에탄올 수용액의 Pervaporation에서의 투과거동)

  • Bae, Seong-Youl;Lee, Han-Sun;Hwang, Seong-Min;Kim, Hee-Taik;Kumazawa, Hidehiro
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.127-138
    • /
    • 1994
  • In the process of pervaporation separation for aqueous ethanol solution through cellulose tai-acetate(CTA) membrane, the modelling on the solution-diffusion permeation mechanism was built up on the basis of sorption and permeation experimental results. Also its function type and parameter were examined. The composition of sorption equilibrium in three component system(Ethanol/Water/CTA) were compared with the calculated value by Flory-Huggins' equation using the pure component sorption data. In order to apply the thermodynamic equilibrium relationship between the membrane free composition in the membrane and the equilibrium composition in the liquid phase, the apparent activity this system, however, the results were not satisfied. Diffusion equations were expressed with the concentration gradient considering permeate alone, and a concentration-dependent diffusion coefficient which includes a parameter was used. And this model was fitted with the measured permeation rates. If the permeation rate and the amount of sorption of one component were much larger than those of the other, the bulk flow term could not be negligible. The flux and selectivity were increased with increasing temperature, and with decreasing downstream pressure.

  • PDF

Studies on the Removal of Silica from the Boric Acid Solution by Reverse Osmosis Membrane Process (역삼투막 공정을 이용한 붕산수 중의 실리카 제거에 관한 연구)

  • 구본문;임지원;이태원;박길웅
    • Membrane Journal
    • /
    • v.5 no.4
    • /
    • pp.137-144
    • /
    • 1995
  • This studies concern the separation of aqueous boric acid solution and same solution containing silica using cellulose acetate RO S/W 4040 module manufactured by Hydranautics Co. The operating conditions of the applied pressures, temperatures, and feed flow rate are also investigated to characterize the permeabilities, biroc acid recovery, and silica rejection, so that the optimum operating conditions would be found out. In the case where the operating conditions are the temperature 35$^{\circ}$C, The pressure 20atm, and the feed flow rate 2.82 l/min, for the boric acid aqueous solution, the boric acid recovery 58.7% and the permeation rate 2.82 l/min were obtained. And also the results showed the boric acid recovery 68.1% and the permeation rate 1.56 l/min at the operating conditions, 35$^{\circ}$C and 10atm. For the boric acid solution containing silica, when the feed solution are at the conditions of 35$^{\circ}$C and 3.2atm, the boric acid recovery 69.7%, the silica rejection 97.5% and the permeation rate 0.47 l/min were obtained. And the operating conditions were at 35$^{\circ}$C, 20atm and the feed flow rate 2.92 l/min, the results showed the boric acid recovery 56.4%, the silica rejection 96.1% and the permeation rate 2.72 l/min.

  • PDF

Effect of Flow Rates of Feed and Sweep Gas on Oxygen Permeation Properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Membrane (공급가스 및 스윕가스 유량에 따른 Ba0.5Sr0.5Co0.8Fe0.2O3-δ 분리막의 산소투과특성)

  • Park, Se Hyung;Sonn, Jong Suk;Lee, Hong Joo;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.407-411
    • /
    • 2015
  • Dense ceramic membranes have been prepared using the commercial perovsikite $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$, powders synthesized by the solid state reaction method. The as-synthesized powders were compressed into disks with 1.0 mm of thickness and the disk was sintered at $1,100^{\circ}C$ for 2 hr. The oxygen permeation flux of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ membrane increased with the increasing temperature and oxygen partial pressure. The activation energy for oxygen permeation was increased with the increasing oxygen partial pressure. Oxygen permeation flux at $950^{\circ}C$ were measured at various flow rates of feed and sweep gas. It has been demonstrated that oxygen permeability increased at elevated flow rates of both gases, but the sweep gas is more influential.

Formulation Design and Evaluation of Niosome Containing Itraconazole for Dermal Delivery System (니오좀 시스템을 이용한 이트라코나졸 외용제의 제제 설계 및 평가)

  • Cho, Hye-Jung;Kyong, Kee-Yeol;Lee, Gye-Won;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.3
    • /
    • pp.165-171
    • /
    • 2005
  • Itraconazole is a triazole antifungal agent to inhibit most fungal pathogens. However, it is difficult for itraconazloe to be delivered by topical system due to its poor aqueous solubility. First, niosomes containing drug were prepared with span 60, cholesterol. tocopherol and poloxamer 407 as vesicle forming agents in an effort to increase solubility of itraconazole. And then prepared niosomes were dispersed in O/W creams (containing xanthan gum, glycerin, vaseline, glyceryl monostearate and $Cerix^{\circledR}-5$) or gels (containing xanthan gum and poloxamer 407). Both creams and gels were evaluated with respect to their rheological properties, in vitro permeation through excised skin of hairless mouse. Creams or gels containing niosome showed pseudoplastic flow and hysteresis loop. For both creams and gels, viscosity was increased with increasing the content of glycerine or vaseline and the content of gel forming polymer, respectively. In creams, the permeability of drug to skin was decreased with increasing the viscosity of cream. The permeability of drug was affected by pH as well as viscosity of gel. In vitro permeation test results demonstrated that cream formulations showed better permeability than gels. In conclusion, these results suggest that creams formulation containing niosome can be useful for the topical delivery of intraconazole.

Effect of Vibration on Grout Permeation Characteristics (진동주입이 그라우트재의 침투 특성에 미치는 영향 연구)

  • Lee, Mun-Seon;Kim, Jong-Sun;Lee, Sung-Dong;Choi, Young-Joon;Yang, Jae-Man;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.267-278
    • /
    • 2010
  • To improve the grout penetration characteristics, vibration method was adopted in this study. The grout material perturbed by cyclic vibration is injected into the ground. By applying the vibrating flow system, cement particles will become less adhesive and the clogging tendency will be decreased. A series of pilot-scale chamber tests were performed to verify the enhancement of the groutability by applying the vibratory grout injection; assessment on change of the lumped parameter $\theta$ which represents a barometer of clogging phenomenon was made. Moreover, the effect of vibratory grout injection through the joint was also investigated using artificially made rock joints. Experimental results as well as analytical results show that the grout penetration depth can be substantially improved by vibration grouting. Moreover, it was found that enhancement of the permeation grouting due to vibratory injection is more dominant at low grouting pressure of less than 400kPa.

  • PDF