• Title/Summary/Keyword: permeation

Search Result 1,689, Processing Time 0.022 seconds

Development of Adsorptive Permeation Membrane (APM) and Process for Separation of $CO_2$ from gas mixtures (이산화탄소 분리를 위한 흡착투과막 및 공정 개발)

  • Yeom, Choong Kyun;Ahn, Hyo Sung;Kang, Kyeong Rok;Kim, Joo Yul;Han, Jin-Soo;Kwon, Keun-Oh
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.409-417
    • /
    • 2013
  • Adsorptive permeation hollow fiber membrane (APM) has been developed for effectively separating $CO_2$ from gas mixture. Inside the APM, zeolite 13X particles were uniformly dispersed without covering their surfaces by a symmetric porous structure of polypropylene lattice. In this study, $CO_2/N_2$ mixture was used as a simulated gas mixture. Separation was achieved by adsorbing $CO_2$ on the zeolite particles in the APM and then permeating $N_2$ into permeate side in passing all the feed gas through the APM. Adsorptive permeation tests were carried out with a set of APM modules, and the adsorptive permeation performances of the modules were analyzed from the test results. After saturation of the adsorbent with $CO_2$, the APM was regenerated by desorption of $CO_2$ from it through vacuuming both inside of outside of the APM hollow fiber, and the regeneration process of the APM by vacuuming was discussed in terms of regeneration efficiency and energy consumption.

Transdermal Delivery of Triamcinolone acetonide Gel by Ultrasound (초음파 조사에 의한 트리암시놀론 아세토니드 겔의 피부투과)

  • Song, Kyung-Suk;Kim, Young-Il;Yang, Jae-Heon
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.2
    • /
    • pp.87-93
    • /
    • 2002
  • This study is to enhance drug penetration via skin and investigate anti-inflammation effect following adoption of ultrasound. For this goal gel containing triamcinolone was prepared and the skin penetration rate and the change effects of blood plasma ingredients and serum enzyme were investigated. Using Franz type diffusion cell and the skin of hairless mouse, the permeation enhancing effect of ultrasound was tested. After the injury by direct trauma, the blood test was performed by measuring WBC, lymphocyte, and neutrophyl, and by analyzing CPK and LDH. The ultrasound transducer whose technical specification is geometric area(GA) $1.4\;cm^2$, effective radiation area(ERA) $0.8\;cm^2$, and beam non-uniformity ratio(BNR) 6.0 max was used. The influence of frequency having an effect on skin permeation rate was higher in the case of using 1MHz and continuous treatment. The temperature of receptor phase was not influenced in skin permeation by phonophoresis. Skin permeation increase attended by intensity of ultrasound, the permeation of triamcinolone was accelerated at $2.5\;w/cm^2\;than\;1.0\;w/cm^2$. Following muscle injury phonophoretic group the number of WBC, neutrophil and lympholyte were decreased significantly as compared with both control group and ultrasound group. The result of variation of serum CPK and LDH activity conformed to the phonophoretic effect as same pattern with the variation of WBC, neutrophil and lymphocyte.

Comparison of Pervaporation and Vapor Permeation Separation Processes for MTBE-methanol System

  • Kim, Youn-Kook;Lee, Keun-Bok;Rhim, Ji-Won
    • Korean Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.36-47
    • /
    • 2000
  • This paper deals with the separation of MTBE-methanol mixtures using crosslinked Poly(vinyl alcohol)(PVA) membranes with sulfur-succinic acid(SSA) as a crosslinking agent by pervaporation and vapor permeation technique. The operating temperatures, methanol concentration in feed mixtures, and SSA concentrations in PVA membranes were varied to investigate the separation performance of PVA/SSA membranes and the optimum separation characteristics by pervaporation and vapor permeation. And also, for PVA/SSA membranes, the swelling measurements were carried out to study the transport phenomena. The swelling measurements were carried out for pure MTBE and methanol, and MTBE/methanol=90/10, 80/20 mixtures using PVA/SSA membranes with varying SSA compositions. There are two factors of the membrane network and the hydrogen bonding. In pervaporation separation was also carried out for MTBE/methanol=90/10, 80/20 mixtures at various temperatures. The sulfuric acid group in SSA took an important role in the membrane performance. The crosslinking effect might be over the hydrogen bonding effect due to the sulfuric acid group at 3 and 5% SSA membranes, and this two factors act vice versa on 7% SSA membrane. In this case, the 5% SSA membrane shows the highest separation factor of 2,095 with the flux of 12.79g/㎡$.$hr for MTBE/methanol=80/20 mixtures at 30$^{\circ}C$ which this mixtures show near the azeotopic composition. Compared to pervaporation, vapor permeation showed less flux and similar separation factor. In this case, the flux decreased significantly because of compact structure and the effect of hydrogen bonding. In vapor permeation, density or concentration of methanol in vaporous feed is lower than that of methanol in liquid feed, as a result, the hydrogen bonding portion between the solvent and the hydroxyl group in PVA is reduced in vapor permeation. In this case, the 7% SSA membranes shows the highest separation factor of 2,187 with the flux of 4.84g/㎡$.$hr for MTBE/methanol=80/20 mixtures at 30$^{\circ}C$.

  • PDF

Establishment of a Release Test Reflecting in vitro Skin Permeation of Nicotine from Commercial Patches (니코틴 패취제로부터 니코틴의 피부투과를 반영하는 방출시험법의 설정)

  • Lee, Su-Jung;Kim, Jae-Keun;Yun, Mi-Ok;Kim, Ho-Jeong;Shim, Chang-Koo;Ze, Keum-Ryon
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.1
    • /
    • pp.27-32
    • /
    • 2000
  • Various release test methods have been applied for the evaluation of nicotine release in vitro from commercial patches. However, whether and how the release data reflect the permeation of nicotine across the skin, is not fully elucidated. To predict in vivo bioavailability from in vitro release tests, correlation between in vitro release and in vitro skin permeation was assessed in the present study. Release of nicotine from three commercial patches was measured for 24 hours under nine experimental conditions which were classified depending on the apparatus (i.e., paddle over disk, cylinder and reciprocating holder) and dissolution media (i.e., phosphate buffer pH 7.4, water and the 1 % phosphoric acid pH 1.5). In vitro permeation of nicotine from the patches across the human cadaver skin was also measured using a diffusion cell. The release of nicotine was better explained by the Higuchi's equation rather than by the first order rate equation. Correlation between the release rate and the in vitro skin permeation differed among the patches. However, in general, the cylinder method, in which water is used as a dissolution medium, showed the highest correlation among the nine release test conditions.

  • PDF

Membrane Filtration Characteristics of Oil/Water Emulsions (오일/물 에멀젼의 분리막 투과 특성)

  • Kim, Jong-Pyo;Lim, Jin-Soo;Ryu, Jong-Hoon;Kim, Jae Jin;Chung, Kun Yong;Chun, Myung-Suk;Min, Byoung-Ryul
    • Clean Technology
    • /
    • v.5 no.2
    • /
    • pp.69-78
    • /
    • 1999
  • Separation characteristics of cutting oil-in-water emulsions were studied experimentally by using various kinds of flat-type microfiltration and ultrafiltration membranes. For ultrafiltration membranes the permeation behavior of cutting oil emulsions obeys the film model, whereas a significant deviation from the model was observed for ASYPOR microfiltration membranes. The experimental data obtained for all the membranes showed that the effect of operating pressure on the permeation flux of oil-in-water emulsions is not very significant. At low transmembrane pressures the permeation flux decreased gradually with increasing filtration time, whereas the permeation flux at high transmembrane pressures decreased steeply for early filtration time. However, every flux eventually reached a constant value that depends only on the applied transmembrane pressure. For the hydrophobic polycarbonate microfiltration membrane the permeation flux increased with the filtration time. The critical permeation pressures were also determined from the data obtained from unstirred cell experiments.

  • PDF

Deformable Liposomes for Topical Skin Delivery of Arbutin

  • Bian, Shengjie;Choi, Min-Koo;Lin, Hongxia;Zheng, Junmin;Chung, Suk-Jae;Shim, Chang-Koo;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.5
    • /
    • pp.299-304
    • /
    • 2006
  • The aim of this study was to investigate the effect of deformable liposomes with sodium cholate on the skin permeation and skin deposition of arbutin, a hydrophilic skin-whitening agent. Various compositions of liposomes were prepared by the extrusion method. Particle size distribution and entrapment efficiency were determined by the laser light scattering and the gel permeation chromatography, respectively. The in vitro rat skin permeation and deposition of arbutin in various skin layers were investigated using the Keshary-Chien diffusion cells at $37^{\circ}C$. The average particle size of the deformable liposomes ranged from 217.4 to 117.4 nm, depending on the composition. The entrapment efficiency was dependent on surfactant concentration and loading dose of arbutin. The permeation rate of 5% arbutin in deformable liposomes was $8.91({\pm}1.33){\mu}g/cm^2/h$, and was not significantly different from 5% arbutin aqueous solution $[9.82({\m}0.86){\mu}g/cm^2/h]$. The deposition of arbutin was $43.34({\pm}12.13)$ and $16.99({\pm}7.83){\mu}g/cm^2$ in stratum corneum layer and epidermis/dermis layer, respectively, after 12 h of permeation study. These results are consistent with several earlier studies for the localization effect of liposomal formulations in stratum corneum, and demonstrated the feasibility of the deformable liposomes as a promising carrier for the skin deposition of hydrophilic skin-whitening compounds.

Comparison of Pervaporation and Vapor Permeation Separation Processes for MTBE-methanol System

  • 김연국;이근복;임지원
    • Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.36-36
    • /
    • 1992
  • This paper deals with the separation of MTBE-methanol mixtures using crosslinked Poly(vinyl alcohol)(PVA) membranes with sulfur-succinic acid(SSA) as a crosslinking agent by pervaporation and vapor permeation technique. The operating temperatures, methanol concentration in feed mixtures, and SSA concentrations in PVA membranes were varied to investigate the separation performance of PVA/SSA membranes and the optimum separation characteristics by pervaporation and vapor permeation. And also, for PVA/SSA membranes, the swelling measurements were carried out to study the transport phenomena. The swelling measurements were carried out for pure MTBE and methanol, and MTBE/methanol=90/10, 80/20 mixtures using PVA/SSA membranes with varying SSA compositions. There are two factors of the membrane network and the hydrogen bonding. In pervaporation separation was also carried out for MTBE/methanol=90/10, 80/20 mixtures at various temperatures. The sulfuric acid group in SSA took an important role in the membrane performance. The crosslinking effect might be over the hydrogen bonding effect due to the sulfuric acid group at 3 and 5% SSA membranes, and this two factors act vice versa on 7% SSA membrane. In this case, the 5% SSA membrane shows the highest separation factor of 2,095 with the flux of 12.79g/㎡·hr for MTBE/methanol=80/20 mixtures at 30℃ which this mixtures show near the azeotopic composition. Compared to pervaporation, vapor permeation showed less flux and similar separation factor. In this case, the flux decreased significantly because of compact structure and the effect of hydrogen bonding. In vapor permeation, density or concentration of methanol in vaporous feed is lower than that of methanol in liquid feed, as a result, the hydrogen bonding portion between the solvent and the hydroxyl group in PVA is reduced in vapor permeation. In this case, the 7% SSA membranes shows the highest separation factor of 2,187 with the flux of 4.84g/㎡·hr for MTBE/methanol=80/20 mixtures at 30℃.

Permeation Characteristics of the Microfiltration Tubular Module using the Discharged Rod (배출봉을 이용한 정밀여과용 관형 모듈의 투과특성)

  • Chung, Kun-Yong;Choi, Jeong-Gyu
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.285-290
    • /
    • 2009
  • The permeation experiments were carried out for the nominal pore size $0.1\;{\mu}m$ and 5 mm inner diameter microfiltration tubular membrane equipped with self-designed discharging rod in order to determine the effect of fouling reduction. Dioctyl tinoxide (DOTO) latex particle was used to prepare up to 0.5 wt% concentration of feed solution, and the experiments were operated within 1.6 bar. The permeation flux effect on the discharged rod was measured as a result of flux comparison between the cases of equipped and non-equipped discharge rod modules for every experiment. The permeation flux for the case using the discharged rod was enhanced to 20% at 1.6 bar operating pressure. The improvement on permeation flux for using the discharged rod was greater as the concentration of feed increased, and reached up to 43% under 0.5 wt% concentration of feed solution.

$CO_2$ permeation behavior of Pebax-2533 plate membranes prepared from 1-Propanol/n-Butanol mixed solvents (1-프로판올/n-부탄올 혼합용매로부터 제조된 Pebax-2533 판형 분리막의 $CO_2$ 투과거동 연구)

  • Lee, Sang Hoon;Kim, Min Zy;Cho, Churl Hee;Han, Moon Hee
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.367-374
    • /
    • 2013
  • In the present study, Pebax-2533 plate membranes were prepared by drying precursor solutions which were obtained by dissolving Pebax-2533 polymer in 1-Propanol/n-Butanol mixed solvents. And then the $CO_2$ and $N_2$ permeation behaviors were tested by using a time-lag system. The prepared Pebax-2533 plate membranes showed a considerable $CO_2/N_2$ separation performance : the $CO_2$ permeability was 130 to 288 barr, and the $CO_2/N_2$ permselectivity was 5-8. The $CO_2$ permeation data obtained by varying feed pressure, permeation temperature, and solvent composition announced that not only the $CO_2$ sorption but also the $CO_2$ diffusion is equally important in the overall $CO_2$ permeation.

The observation of permeation grouting method as soil improvement technique with different grout flow models

  • Celik, Fatih
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.367-374
    • /
    • 2019
  • This study concluded the results of a research on the features of cement based permeation grout, based on some important grout parameters, such as the rheological properties (yield stress and viscosity), coefficient of permeability to grout ($k_G$) and the inject ability of cement grout (N and $N_c$ assessment), which govern the performance of cement based permeation grouting in porous media. Due to the limited knowledge of these important grout parameters and other influencing factors (filtration pressure, rate and time of injection and the grout volume) used in the field work, the application of cement based permeation grouting is still largely a trial and error process in the current practice, especially in the local construction industry. It is seen possible to use simple formulas in order to select the injection parameters and to evaluate their inter-relationship, as well as to optimize injection spacing and times with respect to injection source dimensions and in-situ permeability. The validity of spherical and cylindrical flow model was not verified by any past research works covered in the literature review. Therefore, a theoretical investigation including grout flow models and significant grout parameters for the design of permeation grouting was conducted in this study. This two grout flow models were applied for three grout mixes prepared for w/c=0.75, w/c=1.00 and w/c=1.25 in this study. The relations between injection times, radius, pump pressure and flow rate for both flow models were investigated and the results were presented. Furthermore, in order to investigate these two flow model, some rheological properties of the grout mixes, particle size distribution of the cement used in this study and some geotechnical properties of the sand used in this work were defined and presented.