• Title/Summary/Keyword: permeabilization

Search Result 39, Processing Time 0.028 seconds

Sorbitol Production by Zymomonas mobilis Immobilized in Calcium Alginate Gels and Glutaraldehyde (알지네이트 및 글루타르알데하이드 고정화 Zymomonas mobilis에 의한 쏠비톨 생산)

  • Jung, In-Ho;Choi, Do-Jin;Park, Cheol-Jin;Chun, Uck-Han
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.7
    • /
    • pp.812-816
    • /
    • 1990
  • This study describes the sorbitol production with permeabilized cells of Zymomonas mobilis immobilized in Ca-alginate. Toluene treated cells lose activity of glucose-fructose oxidoreductase due to the leaking of enzyme from the cells. To prevent this leakage, the permeabilized cells were treated with 0.25% glutaraldehyde by stirring for 1 h at room temperature. A continuous process with glutaraldehyde treated cells was developed and no significant reduction in the degree of conversion occurred during 210 h operation. The productivities were estimated to be about $7.2{\sim}7.5\;g/l-h$ for sorbitol at dilution rate $0.18\;h^{-1}$.

  • PDF

Production of bioactive ginsenoside Rg3(S) and compound K using recombinant Lactococcus lactis

  • Li, Ling;Lee, Soo Jin;Yuan, Qiu Ping;Im, Wan Taek;Kim, Sun Chang;Han, Nam Soo
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.412-418
    • /
    • 2018
  • Background: Ginsenoside Rg3(S) and compound K (C-K) are pharmacologically active components of ginseng that promote human health and improve quality of life. The aim of this study was to produce Rg3(S) and C-K from ginseng extract using recombinant Lactococcus lactis. Methods: L. lactis subsp. cremoris NZ9000 (L. lactis NZ9000), which harbors ${\beta}$-glucosidase genes (BglPm and BglBX10) from Paenibacillus mucilaginosus and Flavobacterium johnsoniae, respectively, was reacted with ginseng extract (protopanaxadiol-type ginsenoside mixture). Results: Crude enzyme activity of BglBX10 values comprised 0.001 unit/mL and 0.003 unit/mL in uninduced and induced preparations, respectively. When whole cells of L. lactis harboring pNZBglBX10 were treated with ginseng extract, after permeabilization of cells by xylene, Rb1 and Rd were converted into Rg3(S) with a conversion yield of 61%. C-K was also produced by sequential reactions of the permeabilized cells harboring each pNZBgl and pNZBglBX10, resulting in a 70% maximum conversion yield. Conclusion: This study demonstrates that the lactic acid bacteria having specific ${\beta}$-glucosidase activity can be used to enhance the health benefits of Panax ginseng in either fermented foods or bioconversion processes.

Sorbitol production from Jerusalem artichoke by inulinase and permeabilized Zymomonas mobilis (Inulinase와 투과성이 향상된 Zymomonas mobilis를 이용한 Jerusalem artichoke로 부터의 sorbitol생산)

  • 김인철;전억한
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 1992
  • The use of Jerusalem artichoke containing $\beta$-1, 2-fructose oligomer in the production of sorbitol that is used as food additives and precursor for the L-sorbose has been studied. Coimmobilization of both inulinase and oxidoreductase was considered for the simultaneous reaction for hydrolysis of inulin and conversion of glucose and fructose liberated from inulin to sorbitol. Both inulinase and oxidoreductase were immobilized in chitin(5%, w/v) and K-carrageenan(4%, w/v), The activity of oxidoreductase was specified by permeabilization of Zymomonas mobilis cell with 0.2% CTAB(Cetyltrimethylammonlumbromide). The use of inulinase for hydrolysis of inulin resulted in 36.65g/l of glucose and 85.32g/1 of fructose respectively. These are valuable substrates for sorbitol production. Using these hydrolyzates, accumulation of 35.64g/l for sorbitol occurred at $38^{\circ}C$ and pH6.2. When permeabilized cells and inulinase were coimmobilized, sorbitol produced at 30.15g/l although it is low compared with 35.64g/l in separated reactor system.

  • PDF

THE ROLE OF TUMOR-ASSOCIATED MACROPHAGES ON MICROVESSEL DENSITY AFTER NEOADJUVANT CHEMOTHERAPY IN TONGUE CANCER (설암에서 신부가화학요법후 미세혈관밀도에 대한 종양관련 대식세포의 역할)

  • Park, Bong-Wook;Chung, In-Kyo;Kim, Jong-Ryoul;Kim, Uk-Kyu;Park, Bong-Soo;Kim, Gyoo-Cheon;Byun, June-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.3
    • /
    • pp.209-215
    • /
    • 2006
  • Preoperative neoadjuvant chemotherapy using cisplatin and 5-FU is generally given in oral and maxillofacial cancer. At tissue level both inflammation and fibrosis occur after chemotherapy. The cellular changes mimic those of a granulating wound, with activated macrophages and fibroblasts replacing the malignant cells as they are erradicated. Stromal cells, together with extracellular matrix components, provide the microenvironment that is pivotal for tumor cell growth, invasion, and metastatic progression. Vascular endothelial growth factor(VEGF), an important regulator of angiogenesis in cancer, induces mitogenesis of vascular endothelial cells, and vascular permeabilization and microvessel formation in a tumor are associated with tumor nutrition and oxygenation. Also, they are associated with chemotherapeutic drug delivery. Oxygen delivery to tumor appears to rely on a network of microvessels, On the other hand, the tumor microvessel is clearly an important factor in chemotherapeutic drug delivery to cancer cells, and the efficacy of drug delivery can be high in richly vascularized tumors. So, this study was conducted to evaluate the effect of neoadjuvant chemotherapy on microvessel density from 11 patients with tongue cancers. Our results showed that neoadjuvant chemotherapy was seemed to decrease VEGF expression in tumor cells, however, it did not significantly alter VEGF expression in tumor-associated macrophages. Also, Neoadjuvant chemotherapy had little effect on the microvessel density using CD34, and tumor-associated macrophage level using CD68. Thus, tumorassociated macrophages seem to be the key factor associated with the maintenance of microvessel density after neoadjuvant chemotherapy in tongue cancer.

Detection of Mycobacterium Tuberculosis by In Situ Hybridization (조직내교잡법을 이용한 결핵균의 검출)

  • Park, Chang-Soo;Kim, Young-Chul;Lee, Jee-Shin;Jung, Jong-Jae;Kim, Doo-Hong;Kim, Jin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.5
    • /
    • pp.699-708
    • /
    • 2000
  • Background : A presumptive histopathologic diagnosis of tuberculosis is commonly based on the finding of acid-fast bacilli upon microscopic examination of a diagnostic specimens. Although this traditional histochemical staining method is satisfactory, it is time-consuming and not species-specific. For more specific assessment, in situ hybridization assay with oligonucleotide probes is introduced. Methods : The human surgical specimens were obtained from tuberculosis patients, and experimental specimens were made by injecting cultured M. tuberculosis organisms into fresh rat liver. Oligonucleotide probes complementary to ribosomal RNA portion were synthesized and labeled with multiple biotin molecules. For a rapid detection, all procedures were carried out using manual capillary action technology on the Microprobe staining system. Results : The in situ hybridization assay produced a positive reaction in experimental specimens (80-90% sensitivity) after pepsin-HCl pre-treatment for a good permeabilization of probes, but reliable result was not obtained from human surgical specimens. Conclusion : It is, therefore, suggested that biotin-labeled oligonucleotide probes have considerable potential for identification and in situ detection of M. tuberculosis but, there are some barriers to overcome for the diagnostic use of this method.

  • PDF

CM1 Ligation Induces Apoptosis via Fas-FasL Interaction in Ramos Cells, but via Down-regulation of Bcl-2 and Subsequent Decrease of Mitochondrial Membrane Potential in Raji Cells

  • Lee, Young-Sun;Kim, Yeong-Seok;Kim, Dae-Jin;Hur, Dae-Young;Kang, Jae-Seung;Kim, Young-In;Hahm, Eun-Sil;Cho, Dae-Ho;Hwang, Young-Il;Lee, Wang-Jae
    • IMMUNE NETWORK
    • /
    • v.6 no.2
    • /
    • pp.59-66
    • /
    • 2006
  • Background: CM1 (Centrocyte/-blast Marker I) defined by a mAb developed against concanavalin-A activated PBMC, is expressed specifically on a subpopulation of centroblasts and centrocytes of human germinal center (GC) B cells. Burkitt lymphoma (BL) is a tumor consisting of tumor cells with the characteristics of GC B cell. Previously we reported that CM1 ligation with anti-CM1 mAb induced apoptosis in Ramos $(IgM^{high})$ and Raji $(IgM^{low})$ cells. Methods & Results: In the present study, we observed that CM1 ligation with anti-CM1 mAb induced Fas ligand and Fas expression in Ramos cells, but not in Raji cells. Furthermore, anti-Fas blocking antibody, ZB4, blocked CM1-mediated apoptosis effectively in Ramos cells, but not in Raji cells. Increased mitochondrial membrane permeabilization, which was measured by $DiOC_6$, was observed only in Raji cells. In contrast to no significant change of Bax known as pro-apoptotic protein, anti-apoptotic protein Bcl-2 was significantly decreased in Raji cells. In addition, we observed that CM1 ligation increased release of mitochondrial cytochrome c and upregulated caspase-9 activity in Raji cells. Conclusion: These results suggest that apoptosis induced by CM1-ligation is mediated by Fas-Fas ligand interaction in Ramos cells, whereas apoptosis is mediated by down-regulation of Bcl-2 and subsequent decrease of mitochondrial membrane potential in Raji cells.

Baicalein induces cell death in Human Lung Carcinoma A549 Cells: Role of Apoptosis and Autophagy pathway (인체폐암 A549 세포에서 Baicalein에 의한 세포사멸 유도: Apoptosis와 Autophagy 경로의 역할)

  • Kim, Chul Hwan;Hwang, Buyng Su;Jeong, Yong Tae;Kim, Min-Jin;Shin, Su Young;Oh, Young Taek;Eom, Jung Hye;Lee, Seung Young;Choi, Kyung Min;Cho, Pyo Yun;Jeong, Jin-Woo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.112-112
    • /
    • 2019
  • Baicalein is one of the main flavonoids derived from roots of Scutellaria baicalensis Georgi, a traditional Oriental medicine. Although baicalein has high antitumor effect on several human carcinomas, the mechanism responsible for this property is not unclear. In this study, the data revealed that baicale-ininduced growth inhibition was associated with the induction of apoptosis connecting with cytochrome c release, down-regulation of anti-apoptotic Bcl-xl and increased the percentage of cells with a loss of mitochondria membrane permeabilization. Baicalein also induced the proteolytic activation of caspases and cleavage of PARP; however, blockage of caspases activation by z-VAD-fmk inhibited baicalein-induced apoptosis. In addition, baicalein enhanced the formation of autophagosomes and up-regulated LC3-II/LC3-I ratio. Interestingly, the pretreatment of bafilomycin A1 recovered baicalein-induced cell death suggesting that autophagy by baicalein roles as protective autophagy. Taken together, our results indicated that this flavonoid induces apoptosis and cell protective autophagy. These data means combination treatment with baicalein and autophagy inhibitor might be a promising anticancer drug.

  • PDF

Purification and Characterization of Mitochondrial Mg2+-Independent Sphingomyelinase from Rat Brain

  • Jong Min Choi;Yongwei Piao;Kyong Hoon Ahn;Seok Kyun Kim;Jong Hoon Won;Jae Hong Lee;Ji Min Jang;In Chul Shin;Zhicheng Fu;Sung Yun Jung;Eui Man Jeong;Dae Kyong Kim
    • Molecules and Cells
    • /
    • v.46 no.9
    • /
    • pp.545-557
    • /
    • 2023
  • Sphingomyelinase (SMase) catalyzes ceramide production from sphingomyelin. Ceramides are critical in cellular responses such as apoptosis. They enhance mitochondrial outer membrane permeabilization (MOMP) through self-assembly in the mitochondrial outer membrane to form channels that release cytochrome c from intermembrane space (IMS) into the cytosol, triggering caspase-9 activation. However, the SMase involved in MOMP is yet to be identified. Here, we identified a mitochondrial Mg2+-independent SMase (mt-iSMase) from rat brain, which was purified 6,130-fold using a Percoll gradient, pulled down with biotinylated sphingomyelin, and subjected to Mono Q anion exchange. A single peak of mt-iSMase activity was eluted at a molecular mass of approximately 65 kDa using Superose 6 gel filtration. The purified enzyme showed optimal activity at pH of 6.5 and was inhibited by dithiothreitol and Mg2+, Mn2+, Ni2+, Cu2+, Zn2+, Fe2+, and Fe3+ ions. It was also inhibited by GW4869, which is a non-competitive inhibitor of Mg2+-dependent neutral SMase 2 (encoded by SMPD3), that protects against cytochrome c release-mediated cell death. Subfractionation experiments showed that mt-iSMase localizes in the IMS of the mitochondria, implying that mt-iSMase may play a critical role in generating ceramides for MOMP, cytochrome c release, and apoptosis. These data suggest that the purified enzyme in this study is a novel SMase.

The Extract from Artemisia annua Linné. Induces p53-independent Apoptosis through Mitochondrial Signaling Pathway in A549 Lung Cancer Cells (A549 폐암세포에서 미토콘드리아 경로를 통한 개똥쑥 추출물의 apoptosis 유도 효과)

  • Kim, Bo-Min;Kim, Guen-Tae;Kim, Eun-Ji;Lim, Eun-Gyeong;Kim, Sang-Yong;Kim, Young-Min
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.887-894
    • /
    • 2016
  • The extract from Artemisia annuain L.(AAE) is known as a medicinal herb that is effective against cancer. Apoptosis is the process of programmed cell death, and mitochondria are known to play a central role in cell death control. In this study, we evaluated the p53-independent apoptosis of extract of AAE through downregulation of Bcl-2 and the mitochondrial pathway in A549 (lung cancer cells). AAE may exert cancer cell apoptosis through regulating p-Akt, Cox-2, p53 and mitochondria-mediated apoptotic proteins. p-Akt/cox-2 is known to play an important role in cell proliferation and cell survival. The Bcl-2 pro-apoptotic proteins (such as Bax, Bak and Bim) mediate the permeabilization of the mitochondrial outer membrane. Treatment of AAE reduces p-Akt, p-Mdm2, cox-2 and anti-apoptotic proteins (such as Bcl-2), while tumor suppressor p53 and pro-apoptotic proteins. Activation of Bax/Bak releases cytochrome c from mitochondria to the cytosol to activate a caspase. Caspase-3 is the major effector caspase associated with apoptotic pathways. Caspase-3 generally exists in cytoplasm in the form of a pro-enzyme. In the initiation stage of apoptosis, caspase-3 is activated by proteolytic cleavage and activated caspase-3 cleaves poly (ADP-ribose) polymerase (PARP). We treated Pifithrin-α (p53 inhibitor) and Celecoxib (Cox-2 inhibitor) to learn the relationship between the signal transduction of proteins associated with apoptosis. These results suggest that AAE induces apoptosis through a p53-independent pathway in A549.