• Title/Summary/Keyword: permeability model

Search Result 575, Processing Time 0.029 seconds

Estimation model of coefficient of permeability of soil layer using linear regression analysis (단순회귀분석에 의한 토층지반의 투수계수 산정모델)

  • Lee, Moon-Se;Kim, Kyeong-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1043-1052
    • /
    • 2009
  • To derive easily the coefficient of permeability from several other soil properties, the estimation model of coefficient of permeability was proposed using linear regression analysis. The coefficient of permeability is one of the major factors to evaluate the soil characteristics. The study area is located in Kangwon-do Pyeongchang-gun Jinbu-Myeon. Soil samples of 45 spots were taken from the study area and various soil tests were carried out in laboratory. After selecting the soil factor influenced by the coefficient of permeability through the correlation analysis, the estimation model of coefficient of permeability was developed using the linear regression analysis between the selected soil factor and the coefficient of permeability from permeability test. Also, the estimation model of coefficient of permeability was compared with the results from permeability test and empirical equation, and the suitability of proposed model was proved. As the result of correlation analysis between various soil factors and the coefficient of permeability using SPSS(statistical package for the social sciences), the largest influence factor of coefficient of permeability were the effective grain size, porosity and dry unit weight. The coefficient of permeability calculated from the proposed model was similar to that resulted from permeability test. Therefore, the proposed model can be used in case of estimating the coefficient of permeability at the same soil condition like study area.

  • PDF

Comparison of Different Permeability Models for Production-induced Compaction in Sandstone Reservoirs

  • To, Thanh;Chang, Chandong
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.367-381
    • /
    • 2019
  • We investigate pore pressure conditions and reservoir compaction associated with oil and gas production using 3 different permeability models, which are all based on one-dimensional radial flow diffusion model, but differ in considering permeability evolution during production. Model 1 assumes the most simplistic constant and invariable permeability regardless of production; Model 2 considers permeability reduction associated with reservoir compaction only due to pore pressure drawdown during production; Model 3 also considers permeability reduction but due to the effects of both pore pressure drawdown and coupled pore pressure-stress process. We first derive a unified stress-permeability relation that can be used for various sandstones. We then apply this equation to calculate pore pressure and permeability changes in the reservoir due to fluid extraction using the three permeability models. All the three models yield pore pressure profiles in the form of pressure funnel with different amounts of drawdown. Model 1, assuming constant permeability, obviously predicts the least amount of drawdown with pore pressure condition highest among the three models investigated. Model 2 estimates the largest amount of drawdown and lowest pore pressure condition. Model 3 shows slightly higher pore pressure condition than Model 2 because stress-pore pressure coupling process reduces the effective stress increase due to pore pressure depletion. We compare field data of production rate with the results of the three models. While models 1 and 2 respectively overestimates and underestimates the production rate, Model 3 estimates the field data fairly well. Our result affirms that coupling process between stress and pore pressure occurs during production, and that it is important to incorporate the coupling process in the permeability modeling, especially for tight reservoir having low permeability.

Proposal for the Estimation Model of Coefficient of Permeability of Soil Layer using Linear Regression Analysis (단순회귀분석에 의한 토층의 투수계수산정모델 제안)

  • Lee, Moon-Se;Ryu, Je-Cheon;Lim, Heui-Dae;Park, Joo-Whan;Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.27-36
    • /
    • 2008
  • To derive easily the coefficient of permeability from several other soil properties, the estimation model of coefficient of permeability was proposed using linear regression analysis. The coefficient of permeability is one of the major factors to evaluate the soil characteristics. The study area is located in Kangwon-do Pyeongchang-gun Jinbu-Myeon. Soil samples of 45 spots were taken from the study area and various soil tests were carried out in laboratory. After selecting the soil factor influenced by the coefficient of permeability through the correlation analysis, the estimation model of coefficient of permeability was developed using the linear regression analysis between the selected soil factor and the coefficient of permeability from permeability test. Also, the estimation model of coefficient of permeability was compared with the results from permeability test and empirical equation, and the suitability of proposed model was proved. As the result of correlation analysis between various soil factors and the coefficient of permeability using SPSS(statistical package for the social sciences), the largest influence factor of coefficient of permeability were the effective grain size, porosity and dry unit weight. The coefficient of permeability calculated from the proposed model was similar to that resulted from permeability test. Therefore, the proposed model can be used in case of estimating the coefficient of permeability at the same soil condition like study area.

Identification of the strain-dependent coefficient of permeability by combining the results of experimental and numerical oedometer tests with free lateral movement

  • Balic, Anis;Hadzalic, Emina;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The key parameter that affects the consolidation process of soil is the coefficient of permeability. The common assumption in the consolidation analysis is that the coefficient of permeability is porosity-dependent. However, various authors suggest that the strain-dependency of the coefficient of permeability should also be taken into account. In this paper, we present results of experimental and numerical analyses, with an aim to determine the strain-dependency of the coefficient of permeability. We present in detail both the experimental procedure and the finite element formulation of the two-dimensional axisymmetric numerical model of the oedometer test (standard and modified). We perform a set of experimental standard and modified oedometer tests. We use these experimental results to validate our numerical model and to define the model input parameter. Finally, by combining the experimental and numerical results, we propose the expression for the strain-dependent coefficient of permeability.

Significance of nonlinear permeability in the coupled-numerical analysis of tunnelling

  • Kim, Kang-Hyun;Kim, Ho-Jong;Jeong, Jae-Ho;Shin, Jong-Ho
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.103-109
    • /
    • 2020
  • The inflow rate is of interest in the design of underground structures such as tunnels and buried pipes below the groundwater table. Soil permeability governing the inflow rate significantly affects the hydro-geological behavior of soils but is difficult to estimate due to its wide range of distribution, nonlinearity and anisotropy. Volume changes induced by stress can cause nonlinear stress-strain behavior, resulting in corresponding permeability changes. In this paper, the nonlinearity and anisotropy of permeability are investigated by conducting Rowe cell tests, and a nonlinear permeability model considering anisotropy was proposed. Model modification and parameter evaluation for field application were also addressed. Significance of nonlinear permeability was illustrated by carrying out numerical analysis of a tunnel. It is highlighted that the effect of nonlinear permeability is significant in soils of which volume change is considerable, and particularly appears in the short-term flow behavior.

Estimation of Permeability of Green Sand Mould by Performing Sensitivity Analysis on Neural Networks Model

  • Reddy, N. Subba;Baek, Yong-Hyun;Kim, Seong-Gyeong;Hur, Bo Young
    • Journal of Korea Foundry Society
    • /
    • v.34 no.3
    • /
    • pp.107-111
    • /
    • 2014
  • Permeability is the ability of a material to transmit fluid/gases. It is an important material property and it depends on mould parameters such as grain fineness number, clay, moisture, mulling time, and hardness. Modeling the relationships among these variable and interactions by mathematical models is complex. Hence a biologically inspired artificial neural-network technique with a back-propagation-learning algorithm was developed to estimate the permeability of green sand. The developed model was used to perform a sensitivity analysis to estimate permeability. The individual as well as the combined influence of mould parameters on permeability were simulated. The model was able to describe the complex relationships in the system. The optimum process window for maximum permeability was obtained as 8.75-10.5% clay and 3.9-9.5% moisture. The developed model is very useful in understanding various interactions between inputs and their effects on permeability.

Numerical Experiments on the Evaluation of Effective Permeability and Tunnel Excavation in the Three Dimensional Fracture Network Model (3차원 균열연결망 모델에서의 유효투수계수 평가 및 터널굴착 지하수 유동해석에 대한 수치실험)

  • 장근무
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.275-286
    • /
    • 1998
  • The effective permeability and the representative element volume(REV) of fracture network model were evaluated based on the parameters such as permeability tensor, principal permeability and the direction of principal permeability. The effective permeability ranges between the harmonic mean and the arithmetic mean of the local permeabilities of subdivided blocks. From the numerical experiments, which were for investigating the influence of model volume on the variation of flux for the cubic models, it was found that the variation of flux became reduced as the model volume approached REV. The variation of groundwater flux into the tunnel in the fracture network model was mainly dependent on the ratio of the tunnel length to model size rather than REV. And it was found that groundwater flux into the tunnel was not completely consistent between the fracture network model and the equivalent porous media model, especially when the ratio of the tunnel length to model size is small.

  • PDF

A on Permeability Characteristics of Soil-Bentonite Mixture (Soil-Bentonite 혼합토의 투수 특성 연구)

  • Im, Eun-Sang;Snin, Dong-Hoon;Cho, Seong-Eun;Kim, Jea-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.852-857
    • /
    • 2009
  • Recently the centrifuge test has been used increasingly to clarify a problem of seepage in dam. However, one of the most difficult challenges in the testing is to conform permeability properties of model ground to the prototype. In order to resolve the problem, a few solutions, such as an increase of pore water viscosity and a regulation of water permeability, are suggested. Although the use of prototype materials is principles if a model test is carried out, the materials of similarity gradation is used in the centrifuge model test because of the nature of the model test for dam. Therefore, we choose the latter method for model ground materials. In this study, the permeability properties of soil-bentonite mixtures are studied through the permeation test using triaxial compaction test apparatus.

  • PDF

이온통로에서 음이온 투과성 연구

  • Seo, Bong-Im;Sim, Eun-Ji
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.287-299
    • /
    • 2014
  • Bicarbonate anion ($HCO_3{^-}$) takes the role of major buffer systems in our body by maintaining the pH at 7.4. Epithelial $HCO_3{^-}$ secretion also hydrolyzes the mucus which protects body from noxious infections. It has been widely known that such infections are closely related to $HCO_3{^-}$ permeability through membrane and, thus, increasing the $HCO_3{^-}$ permeability is essential. To evaluate the $HCO_3{^-}$ permeability through ion channels, the free energy changes relevant to ion pumping are calculated with the Integral Equation Formalism-PCM (IEF-PCM) theory. Molecular structures of various anions including $HCO_3{^-}$ were optimized with the density functional theory at the level of B3LYP/6-311++G(d,p) in gas and solution phase. In addition, the anion permeability is significantly influenced by the relative size of the anion and pore. We introduce a shifted volume factor model that describes the pore size effect when the charged solutes transfer through ion channels. We found excellent agreement between experimental and calculated permeability when our novel model of the size effect was taken into account to.

  • PDF

Centrifuge Modeling of Soft Clay with Vertical Drains Considering the Centrifuge Similarity (상사성을 고려한 배수재 설치 연약점토 지반의 원심모델링)

  • Yoo, Nam-Jae;Hong, Young-Kil;Jeong, Gil-Soo;Cho, Han-Ki
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.111-120
    • /
    • 2007
  • This paper is results of experimental research on the effect of application of similarity related to permeability of soil on the consolidation behavior as centrifuge modeling of consolidation is performed with the centrifuge model facility. In this research, the permeability of soil was controlled by changing the viscosity of porewater as the mixed water with glycerin was used during the centrifuge model experiments. The effect of drainage path on consolidation was investigated by installing the vertical drains. A serise of centrifuge model tests with conditions of single vertical and radial horizontal drainage were carried out. Kaolinite and Jumunjin standard sand were used as soft clay and surcharges respectively during tests. For testing condition of single vertical drainage considering similarity of permeability, it was found that consolidation with mixed porewater with glycerin was delayed in comparisons sons with test results with water only. For conditions of horizontal drainage with vertical drains, a low permeability by changing the viscosity of pore water resulted in delayed degree of consolidation at an initial stage of consolidation. But, it predicted not much differences in settlement as long as the consolidation time was sufficiently long enough to finish consolidation. Consequently, it was found that similarity in permeability should be considered to be critical for the case of centrifuge model experiments related to consolidation with long drainage path.

  • PDF