• Title/Summary/Keyword: permeabilisation

Search Result 3, Processing Time 0.024 seconds

Microbial Biosensors for Environmental and Food industrial Applications (환경오염과 식품공업 측정용 미생물 바이오센서)

  • 김의락
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.213-227
    • /
    • 2002
  • To date, the majority of biosensor technologies use binding components such as enzymes antibodies, nucleic acids and protein ligands. In contrast, the goal underlying the use of cells and tissues of animals and plants for a sensor system is to obtain systems capable of extracting information based on the biological activity, mechanisms of action and consequences of exposure to a chemical or biological agent of interest. These systems enable the interrogation of more complex biological response and offer the potential to gather higher information content from measuring physiologic and metabolic response. In these articles, same of the recent trends and applications of microbial biosensors in environmental monitoring and for use in food and fermentations have been reviewed. This endeavor presents many technological challenges to fabricate new microbial biosensors for other scientific field.

Plant cell culture strategies for the production of natural products

  • Ochoa-Villarreal, Marisol;Howat, Susan;Hong, SunMi;Jang, Mi Ok;Jin, Young-Woo;Lee, Eun-Kyong;Loake, Gary J.
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.149-158
    • /
    • 2016
  • Plants have evolved a vast chemical cornucopia to support their sessile lifestyles. Man has exploited this natural resource since Neolithic times and currently plant-derived chemicals are exploited for a myriad of applications. However, plant sources of most high-value natural products (NPs) are not domesticated and therefore their production cannot be undertaken on an agricultural scale. Further, these plant species are often slow growing, their populations limiting, the concentration of the target molecule highly variable and routinely present at extremely low concentrations. Plant cell and organ culture constitutes a sustainable, controllable and environmentally friendly tool for the industrial production of plant NPs. Further, advances in cell line selection, biotransformation, product secretion, cell permeabilisation, extraction and scale-up, among others, are driving increases in plant NP yields. However, there remain significant obstacles to the commercial synthesis of high-value chemicals from these sources. The relatively recent isolation, culturing and characterisation of cambial meristematic cells (CMCs), provides an emerging platform to circumvent many of these potential difficulties.

Methods of in situ PCR to Retain the Amplification Products Inside the Cells (원위치 중합효소 연쇄반응에서 증폭산물의 세포내 보존을 위한 방법들)

  • 이재영
    • Korean Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.294-298
    • /
    • 2001
  • Highly effective polymerase chain reaction (PCR) often brings about false positivity caused by contamination of the sample with target nucleic acids. To solve this problem, in situ PCR (ISPCR) has been developed and applied onto various tissue sections and suspension cultures. With combination of PCR and in situ hybridization, this method amplifies the nucleic acid targets in situ and detect the amplified products inside the cells over the background of various cell types. In order to amplify the nucleic acid targets inside the cells, permeabilisation of a sample is required for the entry of amplification reactants into a cell. Treatments of a sample for the purpose allow not only the entry of reactants into the cell but also the exit of amplification products out of the cell. As a means to reduce the leakage of the amplification products, two methods were applied to suspension cultures of HIV-infected Molt/LAV and U 1.1 cells, in which modified, tailed primers produced long linear amplificants whereas biotinylated dUTP instead of dTTP did bulky products.

  • PDF