• Title/Summary/Keyword: permanent.

Search Result 6,712, Processing Time 0.033 seconds

A Simplified Analysis Approach on the Rotor Position Detection Error in Sensorless Interior Permanent Magnet Brushless DC Motor Drives (센서리스 매입형 영구자석 브러시리스 직류전동기 구동장치에서 단순화된 회전자 위치검출 오차 분석 방법)

  • Lee, Kwang-Woon;Park, Tae-Sik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.449-452
    • /
    • 2016
  • This paper presents a simplified analysis on the rotor position detection error in sensorless interior permanent magnet brushless DC motor (BLDCM) drives, wherein terminal voltage sensing based on the back-electromotive force (back-EMF) zero-crossing point detecting circuitry is employed. The effect of a rotor saliency on the back-EMF's zero-crossing point detection is analyzed using the extended EMF-based voltage equation of the interior permanent BLDCM in a stationary reference frame, and thus the overall analysis is considerably simplified compared to the conventional one. Simulation results are provided to verify the effectiveness of the proposed method.

Reduced-Order Unscented Kalman Filter for Sensorless Control of Permanent-Magnet Synchronous Motor

  • Moon, Cheol;Kwon, Young Ahn
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.683-688
    • /
    • 2017
  • The unscented Kalman filter features a direct transforming process involving unscented transformation for removing the linearization process error that may occur in the extended Kalman filter. This paper proposes a reduced-order unscented Kalman filter for the sensorless control of a permanent magnet synchronous motor. The proposed method can reduce the computational load without degrading the accuracy compared to the conventional Kalman filters. Moreover, the proposed method can directly estimate the electrical rotor position and speed without a back-electromotive force. The proposed Kalman filter for the sensorless control of a permanent magnet synchronous motor is verified through the simulation and experimentation. The performance of the proposed method is evaluated over a wide range of operations, such as forward and reverse rotations in low and high speeds including the detuning parameters.

Permanent Magnet Eddy Current Analysis of SPM Synchronous Motors according to Magnet Shapes

  • Lee, Sun-Kwon;Kang, Gyu-Hong;Kim, Byoung-Woo;Hur, Jin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.398-402
    • /
    • 2014
  • This paper presents the comparison study of permanent magnet (PM) eddy current of concentrated winding type surface permanent magnet synchronous motor (SPMSM) with different rare-earth magnet shapes. The fractional slot winding having 10 poles and 12 slots is studied. The PM eddy current is analyzed to compare for each shape by 2 dimensional (2D) finite element analysis (FEA). The eddy current and their loss of particular position of PM as well as their distributions are displayed for each model. The effect of partly enlarged air-gap made by PM shape to PM eddy current is compared.

Reliability Evaluation of a Permanent Magnetic Coupling (영구자석 커플링의 신뢰성 향상)

  • Jung, Dong Soo
    • Journal of Applied Reliability
    • /
    • v.14 no.4
    • /
    • pp.236-242
    • /
    • 2014
  • Since permanent magnet coupling transfers power by magnetic force without contact, it has little shock, vibration, noise. In case of overload, it protects a pump or a motor which is relatively important by slipping internally. In this study, failure analysis and test evaluation on the permanent magnet coupling have been proposed and the process that reliability of the product improves through design improvement has been presented. And failure cause of typical failure case has been investigated and improvement plan has been presented. Finally, reliability improvement is established by analysis of the test results of before and after acceleration test.

Inductance Estimation of Permanent Magnet Type Transverse Flux Rotating Motor Using Dynamic-Simulation (Dynamic-Simulation을 통한 영구자석형 횡자속 회전기의 인덕턴스 추정)

  • Kim, Kwang-Woon;Kim, Ji-Won;Jung, Yeon-Ho;Lee, Ji-Young;Kang, Do-Hyun;Chang, Jung-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.722-727
    • /
    • 2010
  • This paper presents Dynamic-Simulation to estimate the inductance of a permanent magnet type transverse flux rotating motor by applying the real-time parameter estimation theory. As transverse flux rotating motor has the complex structure, it can be happen to some errors between real value and designed one with respect to the inductance. To reduce this kinds of errors, the real-time parameter estimation theory was applied to dynamic-simulation. And then, By comparing the estimated inductance and designed one, it is realized that the real-time parameter estimation theory can be applied in the permanent magnet type transverse flux rotating motor.

Shape Optimization for Reduction of Cogging Torque in Permanent Magnet Motor by Sensitivity Analysis (영구자석전동기의 코깅토오크저감을 위한 민감도에 의한 형상최적화)

  • Park, Il-Han;Lee, Beom-Taek;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.19-22
    • /
    • 1990
  • In this paper, in order to reduce the cogging torque in a permanent motor, a method to optimize the shape of permanent magnet and iron pole is presented. Because the cogging torque comes from the irregular system energy variation according to the rotor position, system energy variation is taken as object function and the object function is minimized to optimize the shape. The positions of permanent magnet surface and iron pole surface are chosen as design parameters and sensitivity of object function with respect to design parameter is calculated. The shape is changed according to sensitivity. Sensitivity can be generated by methods that exploit the FEM formulation. A numerical example shows that about 90% of the original cogging torque is reduced.

  • PDF

The Characteristics Analysis of X-Y Planar Motor with New Permanent Magnet Array (새로운 영구자석 배열에 의한 X-Y평면 모터의 특성해석)

  • Huang, Rui;Lee, Dong-Yeup;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.124-126
    • /
    • 2006
  • In this paper, a synchronous permanent magnet planar motor (SPMPM) with new permanent magnet array is proposed and the magnetic field distribution is obtained analytically by using magnetic scalar potential. Compared to those of Asakawa, Chitayat and experimental data, the superiority and feasibility of the novel magnet array are verified. The characteristics of the synchronous permanent magnet planar motor with this novel magnet array such as inductance, back-EMF, and force are calculated by analytical method.

  • PDF

The Characteristics of Noise and Vibration by Asymmetrical Overhang Effect of Permanent Magnet in BLDC Motor (BLDC Motor의 비대칭 오버행 효과에 의한 소음 및 진동 특성)

  • An, Young-Gyu;Kang, Gyu-Hong;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.109-111
    • /
    • 2006
  • This paper deals with a noise and vibration of brushless dc (BLDC) motors due to the asymmetrical overhang of permanent magnet. The asymmetrical overhang of permanent magnet is generating z-axis thrust which is lead to eccentric force and vibration of BLDC motor. The z-axis thrust considering asymmetrical overhang effect of permanent magnet is analyzed by using 3-D FEM and the result is compared to experimentation.

  • PDF

Shape Optimization for Reduction of Cogging Torque in Permanent Magnet Motor by Sensitivity Analysis (영구자석전동기의 코깅토오크저감을 위한 민감도에 의한 형상 최적화)

  • 박일한;이범택;한현교;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.12
    • /
    • pp.1246-1252
    • /
    • 1990
  • In order to reduce the cogging torque in a permanent magnet motor, a method to optimize the shape of permanent magnet and iron pole is presented. Sine the cogging torque comes from the irregular system energy variation according to the rotor position, system energy variation is taken as object function and the object function is minimized to optimize the shape. The positions of permanent magnet surface and iron pole surface are chosen as design parameters and sensitivity of object function with respect to the design parameter is calculated. The shape is changed according to sensitivity can be generated by methods that exploit the FEM formulation. A numerical example shows that the cogging torque is reduced to about 10% of the original value.

  • PDF

A Experimental Study on The Durability and Mechanical of Permanent Form Mortar (비탈형영구 거푸집용 모르터의 내구성 및 역학적 특성에 관한 실험적 연구)

  • 김우재;표순주;임남기;김형남;김성식;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.731-736
    • /
    • 1998
  • The dynamics and Durability of Permanent Form Mortar were observed. The results were as the followings. To construct New permanent form, this study constructed permanent form with fiber mortar. In this course glass fiber and polymer, fine aggregate were substituted with river sand and crush sand. To understand material quality effect, flexible mortar and inflexible mortar were tested. According to the microstructure of polymermatrix test by SEM, higher density by Co-matrix effect from polymer addiction was observed. This is considered to increase acid-resistanc, impact proof strenght. In the test of durability of freezing and thawing, polymer mortar was proved to be water proof. It seems to be improved in its characteristics in proportion to increasing W/C ratio. When the W/C ratio is 30%, it is most effective.

  • PDF