• Title/Summary/Keyword: permanent traffic volume survey

Search Result 5, Processing Time 0.019 seconds

Estimating Design Hour Factor Using Permanent Survey (상시 교통량 자료를 이용한 설계시간계수 추정)

  • Ha, Jung Ah;Kim, Sung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.155-162
    • /
    • 2008
  • This study shows how to estimate the design hour factor when the counting stations don't have all of the hourly volumes such as in a coverage survey. A coverage survey records traffic volume from 1 to 5 times in a year so it lacks the detailed information to calculate the design hour factor. This study used the traffic volumes of permanent surveys to estimate the design hour factor in coverage surveys using correlation and regression analysis. A total 7 independent variables are used : the coefficient of variance of hourly volume, standard deviation of hourly volume, peak hour volume, AADT, heavy traffic volume proprotion, day time traffic volume proportion and D factor. All of variables are plotted on a curve, so it must use non-linear regression to analyze the data. As a result the coefficient of determination and MAE are good at logarith model using AADT.

Division of Homogeneous Road Sections for National Highway by Genetic Algorithms (유전자 알고리즘을 적용한 국도의 동질성 구간 분할)

  • Oh, Ju-Sam;Lim, Sung-Han;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.41-47
    • /
    • 2005
  • Traffic data such as traffic volume, speed, and vehicle Class are very important basic data for the plan and design of highway. Based on traffic data, the future service level of a specific highway and geometry of newly constructed or expended road is predicted and determined. The Ministry of Construction & Transportation has simultaneously surveyed coverage count and permanent count at highways since 1985. Traffic volume survey sections were determined at jointed nodes of highways and jointed nodes of highways and other roads such as freeway and local highway. Volume survey was performed at these sections. The premise to decide these sections is assumed that links between jointed nodes of main highways exhibit similar traffic characteristics. Recently, due to the change of highway geometries such as construction of detour road and installations of traffic facilities such as installation of media, traffic characteristics of the existing traffic volume survey sections was changed. To reflect these changes, traffic characteristics at homogeneous road sections was widely evaluated and analyzed. Using Genetic Algorithms, a model was developed for the evaluation of traffic characteristics at homogeneous road sections. Traffic volume survey sections were then determined through the application of the developed model for current traffic system.

  • PDF

Application of AHP to Select for Priority of Permanent Traffic Volume Survey Site (AHP를 적용한 상시 교통량 조사 지점 선정 우선순위 결정에 관한 연구)

  • Oh, Ju-Sam;Lim, Sung-Han;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.21-30
    • /
    • 2005
  • Traffic volume data have been used for the plan, the design, and the operation of highway. Since 1955, traffic survey has been nation- widely carried out at national highway and the regular survey in national highway has been conducted at the intersections of highways. However, it is critical issue to select the priority of the regular survey because it is almost impossible to conduct regular survey at all intersections of national highways. In this study, MCDM(Multiple Criteria Decision Making) using AHP(Analytic Hierarchy Process) was applied to decide the priority of the regular survey. The following standard variables for determining the priority was selected the highway plan variables[AADT, VKT, Peak Hourly Volume, Location of highway from Urban], the highway design variables[Volume(pcu), Directional Traffic Volume, Heavy Vehicle Rate], and the highway operation variables[Speed, Density, V/C]. The standard variables were quantified and normalized. Using the Eigen vector method, the weighted values of each hierarchy based on the pair-wise comparison values from the questionnaire survey were calculated. The selection of the priority of regular survey was dependent on the size of the product of the weighted values for each hierarchy and the normalized values for the standard variables. Finally, the priority of regular survey of the intersections of national highways was determined according to the order in the size of the product of two values.

  • PDF

Statistical Analysis on Lateral Wheel Path Distributions of 2nd and 3rd Traffic Lanes (2, 3차로 통행차량의 횡방향 이격거리에 대한 통계 분석 연구)

  • Kim, Nak-seok
    • Journal of the Society of Disaster Information
    • /
    • v.5 no.1
    • /
    • pp.30-44
    • /
    • 2009
  • Asphalt concrete pavements are often destroyed within the intended design life due to the increasement in traffic volume. The most common types of asphalt concrete pavement damages are permanent deformation and fatigue cracking, and so on. In this research, characteristics of traffic loadings and lateral wheel path distributions are analyzed using the field survey on traffic flow. The obtained traffic characteristics can be used to the decision making for the maintenance policy of roads. According to the traffic lane analysis for the 2nd and 3rd lanes, inner lane vehicles tended to pass to the right side to avoid the opposite side vehicles. In addition, the outside lane vehicles were deviated to the left side to avoid passengers. It is also noted that the lateral wheel path distributions was close to the normal distribution.

  • PDF

A Study on Road Traffic Volume Survey Using Vehicle Specification DB (자동차 제원 DB를 활용한 도로교통량 조사방안 연구)

  • Ji min Kim;Dong seob Oh
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.93-104
    • /
    • 2023
  • Currently, the permanent road traffic volume surveys under Road Act are conducted using a intrusive Automatic Vehicle Classification (AVC) equipments to classify 12 categories of vehicles. However, intrusive AVC equipment inevitably have friction with vehicles, and physical damage to sensors due to cracks in roads, plastic deformation, and road construction decreases the operation rate. As a result, accuracy and reliability in actual operation are deteriorated, and maintenance costs are also increasing. With the recent development of ITS technology, research to replace the intrusive AVC equipment is being conducted. However multiple equipments or self-built DB operations were required to classify 12 categories of vehicles. Therefore, this study attempted to prepare a method for classifying 12 categories of vehicles using vehicle specification information of the Vehicle Management Information System(VMIS), which is collected and managed in accordance with Motor Vehicle Management Act. In the future, it is expected to be used to upgrade and diversify road traffic statistics using vehicle specifications such as the introduction of a road traffic survey system using Automatic Number Plate Recognition(ANPR) and classification of eco-friendly vehicles.