• Title/Summary/Keyword: permanent displacements

Search Result 45, Processing Time 0.025 seconds

Modeling and Multivariable Control of a Novel Multi-Dimensional Levitated Stage with High Precision

  • Hu Tiejun;Kim Won-jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • This paper presents the modeling and multivariable feedback control of a novel high-precision multi-dimensional positioning stage. This integrated 6-degree-of-freedom. (DOF) motion stage is levitated by three aerostatic bearings and actuated by 3 three-phase synchronous permanent-magnet planar motors (SPMPMs). It can generate all 6-DOF motions with only a single moving part. With the DQ decomposition theory, this positioning stage is modeled as a multi-input multi-output (MIMO) electromechanical system with six inputs (currents) and six outputs (displacements). To achieve high-precision positioning capability, discrete-time integrator-augmented linear-quadratic-regulator (LQR) and reduced-order linearquadratic-Gaussian (LQG) control methodologies are applied. Digital multivariable controllers are designed and implemented on the positioning system, and experimental results are also presented in this paper to demonstrate the stage's dynamic performance.

Development of an Electromagnetic Actuator for Probe-based Data using Si Storage by Process and Cu Electroplating (실리콘 공정 및 동 도금 기술을 이용한 탐침형 정보저장장치의 전자기력 미디어 구동기 제작)

  • 조진우;이경일;김성현;최영진
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.225-230
    • /
    • 2004
  • An electromagnetic actuator has been designed and fabricated for Probe-based data storage applications. The actuator consists of permanent magnets(SmCo) housing and a media Platform which is connected to the Si frame by four couples of Si leaf springs. In order to generate electromagnetic force, Cu coils were electroplated under the media platform. The magnetic field distribution was calculated with 3D Finite Element Method of Maxwell 3D program. The field strength felt by Cu coils was estimated to be about 0.33T when the distance between the media platform and permanent magnets is $200\mu\textrm{m}$. The static and dynamic motions of the actuator were analyzed by FEM method with ANSYS 5.3. The measured displacements of the actuator were about $\pm$$92\mu\textrm{m}$ for input current of $\pm$40㎃ and the resonance frequency was 100Hz. The proposed electromagnetic actuator can be utilized for media driver of probe-based data storage system.

Experimental Study for Optimizing the Acceleration of AC Servomotor Using Finite Jerk

  • Chung, Won-Jee;Kim, Sung-Hyun;Hwan, Park-Myung;Su, Shin-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.604-609
    • /
    • 2005
  • This paper presents an experimental study for optimizing the acceleration of AC servomotor using finite jerk (the first derivative of acceleration). The acceleration optimization with finite jerk aims at generating the smooth velocity profile of AC servomotor by experimentally minimizing vibration resulted from the initial friction of servomotor. The stick-slip motion of AC servomotor induced by initial friction can result in the positional errors that are not good for high-precision devices such as the assembly robot arms to be used in a 300mm wafer or a LCD (Liquid Crystal Display) stocker system. In this paper, experiments were made by using a PM (Permanent Magnet) type AC servomotor with MMC(R) (Multi Motion Controller) programmed in Visual C++(R). The experiments have been performed for finding the optimal duration time of finite jerk in terms of the minimization of vibration displacements when both the magnitude of velocity and the allowable acceleration are given. We have compared the proposed control with the conventional control with trapezoidal velocity profile by measuring vibration displacements. The effectiveness of the proposed control has been verified in that the experimental results showed the decrease of vibration displacement by about 24%.

  • PDF

Sustainable Surface Deformation Related with 2006 Augustine Volcano Eruption in Alaska Measured Using GPS and InSAR Techniques

  • Lee, Seulki;Kim, Sukyung;Lee, Changwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.357-372
    • /
    • 2016
  • Augustine volcano, located along the Aleutian Arc, is one of the most active volcanoes in Alaska and nearby islands, with seven eruptions occurring between 1812 and 2006. This study monitored the surface displacement before and after the most recent 2006 eruption. For analysis, we conducted a time-series analysis on data observed at the permanent GPS(Global Positioning System) observation stations in Augustine Island between 2005 and 2011. According to the surface displacement analysis results based on GPS data, the movement of the surface inflation at the average speed of 2.3 cm/year three months prior to the eruption has been clearly observed, with the post-eruption surface deflation at the speed of 1.6 cm/year. To compare surface displacements measurement by GPS observation, ENVISAT(Environmental satellite) radar satellite data were collected between 2003 and 2010 and processed the SBAS(Small Baseline Subset) method, one of the time-series analysis techniques using multiple InSAR(Interferometric Synthetic Aperture Radar) data sets. This result represents 0.97 correlation value between GPS and InSAR time-series surface displacements. This research has been completed precise surface deformation using GPS and time-series InSAR methods for a detection of precursor symptom on Augustine volcano.

Using a feed forward ANN to model the inelastic behaviour of confined sandwich panels

  • Marante, Maria E.;Barreto, Wilmer J.;Picon, Ricardo A.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.545-552
    • /
    • 2019
  • The analysis and design of complex structures like sandwich-panel elements are difficult; the use of finite element method for the analysis is complicated and time consuming when non-linear effects are considered. On the other hand, artificial neural network (ANN) models can capture the non-linear effects and its application requires lesser computational demand. Two ANN models were trained, tested and validated to compute the force for a given displacement of a sandwich-type roof element; 2555 force and element deformation pairs were used for training the ANN models. For the models trained without considering the damping effect, there were two values in the input layer: maximum displacement and current displacement, and for the model considering damping, displacement from the previous step was used as an additional input. Totally, 400 ANN models were trained. Results show that there is a good agreement between the experimental and simulated data, and the models showed a good performance with a mean square error value of 4548.85. Both the ANN models could simulate the inelastic behaviour, loss of rigidity, and evolution of permanent displacements. The models could also interpolate and extrapolate, which enables them to be used as an analysis and design tool for such complex elements.

A Study on the Seismic Resistance of Fill-dams by Newmark-type Deformation Analysis (Newmark 기반 변형해석에 의한 필댐의 내진저항성 연구)

  • Park, Dong Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.161-170
    • /
    • 2014
  • Newmark-type deformation analysis has rarely been done in Korea due to the popularity of simple pseudo-static limit equilibrium analysis and detailed time-history FE/FD dynamic analysis. However, the Korean seismic dam design code updated in 2011 prescribes Newmark-type deformation analysis as a major dynamic analysis method for the seismic evaluation of fill dams. In addition, a design PGA for dynamic analysis is significantly increased in the code. This paper aims to study the seismic evaluation of four existing large fill dams through advanced FEM/Newmark-type deformation analyses for the artificial earthquake time histories with the design PGA of 0.22g. Dynamic soil properties obtained from in-situ geo-physical surveys are applied as input parameters. For the FEM/Newmark analyses, sensitivity analyses are performed to study the effects of input PGA and $G_{max}$ of shell zone on the Newmark deformation. As a result, in terms of deformation, four fill dams are proved to be reasonably safe under the PGA of 0.22g with yield coefficients of 0.136 to 0.187, which are highly resistant for extreme events. Sensitivity analysis as a function of PGA shows that $PGA_{30cm}$ (a limiting PGA to cause the 30 cm of Newmark permanent displacement on the critical slip surface) is a good indicator for seismic safety check. CFRD shows a higher seismic resistance than ECRD. Another sensitivity analysis shows that $G_{max}$ per depth does not significantly affect the site response characteristics, however lower $G_{max}$ profile causes larger Newmark deformation. Through this study, it is proved that the amplification of ground motion within the sliding mass and the location of critical slip surface are the dominant factors governing permanent displacements.

Modelling and Analysis of Roll-Type Steel Mat for Rapid Stabilization of Permafrost (II) - Parametric Analysis - (영구동토 급속안정화를 위한 롤타입강재매트의 모델링과 해석(II) - 변수해석 -)

  • Moon, Do Young;Kang, Jae Mo;Lee, Janggeun;Lee, Sang Yoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.109-117
    • /
    • 2014
  • Using the finite element analysis model presented in accompanying paper, parametric study was performed in this paper. Various parameters were considered such as the width of wheel loads-induced permanent plastic deformation, backfill, equivalent thickness and orthogonal characteristic of steel mats. The effects of these parameters were analyzed for vertical and rotational displacements, maximum moment and tensile stress. From the parametric studies, it is found that great vertical deflection and tensile stress above allowable flexural tensile strength are developed in steel mats by the wheel loads-induced permanent plastic deformation. Backfill or increasing the thickness of steel mats is a feasible solution on this problem.

Inelastic Behavior of Steel Frames with Buckling Restrained Braced (비좌굴가새가 설치된 골조의 비탄성거동)

  • Kim Jin-Koo;Park Jun-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.97-104
    • /
    • 2005
  • The seismic behavior of framed structure with Chevron-type bucking restrained braces were investigated and their behavior factors were evaluated following the procedure proposed in ATC-19 & ATC-34. Two types of structures, building frame systems and dual systems, with 4, 8, 12, and 16 stories were designed per the IBC 2000, the AISC LRFD and the AISC/SEAOC Recommended Provisions for BRBF. Nonlinear static pushover analyses were carried out to observe the plastic hinge formation and to identify the loads and the displacements at the yield and the ultimate states. Time history analyses were also carried out to compute the permanent displacement md the dissipated hysteretic energy. According to the analysis results, the response modification factors of model structures fumed out to be larger than what is proposed in the provision in low story structures, and a little smaller in medium-story structures. The dual systems, even though designed with smaller seismic load, showed superior static and dynamic performances.

  • PDF

Behavior of cable-stayed bridges under dynamic subsidence of pylons

  • Raftoyiannis, I.G.;Michaltsos, G.T.;Konstantakopoulos, T.G.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.317-345
    • /
    • 2012
  • Cable-stayed bridges are often used in modern bridge engineering for connecting two geographical points of long distance. A special load case to cable-stayed bridges is earthquake, which can produce horizontal as well as vertical movements on the pylons of the bridge. These movements may be transient in nature, i.e., only resulting in the transient vibration of the bridge, but causing no damage consequences. In some extreme cases, they may cause permanent subsidence on one or more pylons of the bridge. In this paper, the effect of pylons' subsidence on the dynamic deformations of the bridge and on the cables' strength is thoroughly studied. Conclusions useful to the design of cable-stayed bridges will be drawn from the numerical study.

Fault Tolerant Homopolar Magnetic Bearings with Flux Coupling (자기연성을 이용한 동극형 자기베어링의 고장강건 제어)

  • Na, Uhn-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.83-92
    • /
    • 2008
  • This paper develops the theory for a fault-tolerant, permanent magnet biased, homopolar magnetic bearing. If some of the coils or power amplifiers suddenly fail, the remaining coil currents change via a novel distribution matrix such that the same magnetic forces are maintained before and after failure. Lagrange multiplier optimization with equality constraints is utilized to calculate the optimal distribution matrix that maximizes the load capacity of the failed bearing. Some numerical examples of distribution matrices are provided to illustrate the theory. Simulations show that very much the same dynamic responses (orbits or displacements) are maintained throughout failure events (up to any combination of 3 coils failed for the 6 pole magnetic bearing) while currents and fluxes change significantly. The overall load capacity of the bearing actuator is reduced as coils fail. The same magnetic forces are then preserved up to the load capacity of the failed.