• Title/Summary/Keyword: periplasmic secretion

Search Result 27, Processing Time 0.027 seconds

Analysis of Factors Affecting the Periplasmic Production of Recombinant Proteins in Escherichia coli

  • Mergulhao, Filipe J.;Monteiro, Gabriel A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1236-1241
    • /
    • 2007
  • Five fusion proteins between Z domains derived from Staphylococcal Protein A and Green Fluorescent Protein or Human Proinsulin were produced on the periplasm of Escherichia coli. The effects of the molecular weight and amino acid composition of the translocated peptide, culture medium composition, and growth phase of the bacterial culture were analyzed regarding the expression and periplasmic secretion of the recombinant proteins. It was found that secretion was not affected by the size of the translocated peptide (17-42 kDa) and that the highest periplasmic production values were obtained on the exponential phase of growth. Moreover, the highest periplasmic values were obtained in minimal medium, showing the relevance of the culture medium composition on secretion. In silico prediction analysis suggested that with respect to the five proteins used in this study, those that are prone to form ${\alpha}$-helix structures are more translocated to the periplasm.

Designing Signal Peptides for Efficient Periplasmic Expression of Human Growth Hormone in Escherichia coli

  • Jeiranikhameneh, Meisam;Moshiri, Farzaneh;Falasafi, Soheil Keyhan;Zomorodipour, Alireza
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1999-2009
    • /
    • 2017
  • The secretion efficiency of a protein in a Sec-type secretion system is mainly determined by an N-terminal signal peptide and its combination with its cognate protein. Five signal peptides, namely, two synthetic Sec-type and three Bacillus licheniformis alpha-amylase-derived signal peptides, were compared for periplasmic expression of the human growth hormone (hGH) in E. coli. Based on in silico predictions on the signal peptides' cleavage efficiencies and their corresponding mRNA secondary structures, a number of amino acid substitutions and silent mutations were considered in the modified signal sequences. The two synthetic signal peptides, specifically designed for hGH secretion in E. coli, differ in their N-terminal positively charged residues and hydrophobic region lengths. According to the mRNA secondary structure predictions, combinations of the protein and each of the five signal sequences could lead to different outcomes, especially when accessibility of the initiator ATG and ribosome binding sites were considered. In the experimental stage, the two synthetic signal peptides displayed complete processing and resulted in efficient secretion of the mature hGH in periplasmic regions, as was demonstrated by protein analysis. The three alpha-amylase-derived signal peptides, however, were processed partially from their precursors. Therefore, to achieve efficient secretion of a protein in a heterologous system, designing a specific signal peptide by using a combined approach of optimizations of the mRNA secondary structure and the signal peptide H-domain and cleavage site is recommended.

재조합 Saccharomyces cerevisiae에서 Inulinase와 Invertase의 발현과 분비에 미치는 배양조건의 영향

  • 남수완;신동하;김연희
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.3
    • /
    • pp.258-265
    • /
    • 1997
  • The effects of medium pH and culture temperature on the expression and secretion of inulinase and invertase were investigated with recombinant Saccharomyces cerevisiae cells. These cells were obtained by transformation of 2$\mu$-based plasmids pYI10 and pYS10 which contain Kluyveromyces marxianus inulinase gene (INU1A) and S. cerevisiae invertase gene (SUC2), respectively, in the downstream of GAL1 promoter. The expression level and localization of inulinase and invertase were not affected significantly by the initial medium pH: secretion efficiencies of inulinase and invertase into the medium were about 90% and 60%, respectively, in the pH ranges of 4.0 to 6.5. However, the expression and secretion of both enzymes were strongly dependent on the culture temperature. The highest expression (7.7 units/mL) and secretion (6.7 units/mL) of inulinase were observed at 28$\circ$C and 30$\circ$C. As a consequence of decreased localization of inulinase in the periplasmic space, the secretion efficiency increased from 68% at 20$\circ$C, to 95% at 35$\circ$C,. The total expression level and secretion efficiency of invertase increased from 19 units/mL and 55% at 20$\circ$C to 25 units/mL and 68% at 35$\circ$C, respectively. Irrespective of the culture temperature, the invertase activity in the cellular fraction (periplasmic space and cytoplasmic fractions) was kept constant at around 33-45%.

  • PDF

Expression and Biochemical Characterization of the Periplasmic Domain of Bacterial Outer Membrane Porin TdeA

  • Kim, Seul-Ki;Yum, Soo-Hwan;Jo, Wol-Soon;Lee, Bok-Luel;Jeong, Min-Ho;Ha, Nam-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.845-851
    • /
    • 2008
  • TolC is an outer membrane porin protein and an essential component of drug efflux and type-I secretion systems in Gram-negative bacteria. TolC comprises a periplasmic $\alpha$-helical barrel domain and a membrane-embedded $\beta$-barrel domain. TdeA, a functional and structural homolog of TolC, is required for toxin and drug export in the pathogenic oral bacterium Actinobacillus actinomycetemcomitans. Here, we report the expression of the periplasmic domain of TdeA as a soluble protein by substitution of the membrane-embedded domain with short linkers, which enabled us to purify the protein in the absence of detergent. We confirmed the structural integrity of the TdeA periplasmic domain by size-exclusion chromatography, circular dichroism spectroscopy, and electron microscopy, which together showed that the periplasmic domain of the TolC protein family fold correctly on its own. We further demonstrated that the periplasmic domain of TdeA interacts with peptidoglycans of the bacterial cell wall, which supports the idea that completely folded TolC family proteins traverse the peptidoglycan layer to interact with inner membrane transporters.

The Signal Sequence of Sporulation-Specific Glucoamylase Directs the Secretion of Bacterial Endo-1,4-β-D-Glucanase in Yeast (효모에서 포자형성 특이 글루코아밀라제의 분비서열에 의한 세균 endo-1,4-β-D-glucanase의 분비)

  • Ahn, Soon-Cheol;Kim, Eun-Ju;Chun, Sung-Sik;Cho, Yong-Kweon;Moon, Ja-Young;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.142-147
    • /
    • 2012
  • The sporulation-specific glucoamylase (SGA) of Saccharomyces diastaticus is known to be produced in the cytoplasm during sporulation. For the purpose of proving that SGA has secretory potential, we constructed a hybrid plasmid, pYESC25, containing the promoter and the putative signal sequence of the SGA fused in frame to the endo-1,4-${\beta}$-D-glucanase (CMCase) gene of Bacillus subtilis without its own signal sequence. The recipient yeast strain of S. diastaticus YIY345 was transformed with the hybrid plasmid. CMCase secretion from S. diastaticus harboring pYESC25 into culture medium was confirmed by the formation of yellowish halos around transformants after staining with Congo red on a CMC agar plate. The transformant culture was fractionated to the extracellular, periplasmic, and intracellular fraction, followed by the measurement of CMCase activity. About 63% and 13% enzyme activity were detected in the culture supernatant (extracellular fraction) and periplasmic fraction, respectively. Furthermore, ConA-Sepharose chromatography, native gel electrophoresis, and activity staining revealed that CMCase produced in yeast was glycosylated and its molecular weight was larger than that of the unglycosylated form from B. subtilis. Taking these findings together, SGA has the potential of secretion to culture medium, and the putative signal sequence of SGA can efficiently direct bacterial CMCase to the yeast secretion pathway.

Secretion of the cloned serratia marcescens nuclease in escherichia coli (Serratia marcescens nuclease의 escherichia coli에서의 분비)

  • 신용철;이상열;김기석
    • Korean Journal of Microbiology
    • /
    • v.28 no.4
    • /
    • pp.297-303
    • /
    • 1990
  • Secretion of Serratia marcescens nuclease by E. coli harboring pNUC4 was investigated. 29.2, 54.2 and 16.6% of total nuclease were observed in culture medium, periplasm, and cytoplasm of E. coli, respectively. To investigate the secretion mechanism of Serratia nuclease by E. coli, secretion kinetics of nuclease was examined in the presences of sodium azide, and energy metabolism inhibitor; procaine, an exoprotein processing inhibitor; and chloramphenicol, a protein synthesis inhibitor. In the presence of sodium azide, periplasmic unclease was gradually decreased and the extracellular nyclease was linearly increased according to the incubation time. Similar results were obtained in presences of procaine and chloramphenicol. From these results, we concluded that two transport processes are involved in nuclease secretion: secretion of nuclease through the inner membrane is occurred by an energy-dependent process and probably requiring precusor processing: secretion of nuclease through outer membrane does not require energy, de novo protein synthesis, and precursor processing.

  • PDF

Native and Foreign Proteins Secreted by the Cupriavidus metallidurans Type II System and an Alternative Mechanism

  • Xu, Houjuan;Denny, Timothy P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.791-807
    • /
    • 2017
  • The type II secretion system (T2SS), which transports selected periplasmic proteins across the outer membrane, has rarely been studied in nonpathogens or in organisms classified as Betaproteobacteria. Therefore, we studied Cupriavidus metallidurans (Cme), a facultative chemilithoautotroph. Gel analysis of extracellular proteins revealed no remarkable differences between the wild type and the T2SS mutants. However, enzyme assays revealed that native extracellular alkaline phosphatase is a T2SS substrate, because activity was 10-fold greater for the wild type than a T2SS mutant. In Cme engineered to produce three Ralstonia solanacearum (Rso) exoenzymes, at least 95% of their total activities were extracellular, but unexpectedly high percentages of these exoenzymes remained extracellular in T2SS mutants cultured in rich broth. These conditions appear to permit an alternative secretion process, because neither cell lysis nor periplasmic leakage was observed when Cme produced a Pectobacterium carotovorum exoenzyme, and wild-type Cme cultured in minimal medium secreted 98% of Rso polygalacturonase, but 92% of this exoenzyme remained intracellular in T2SS mutants. We concluded that Cme has a functional T2SS despite lacking any abundant native T2SS substrates. The efficient secretion of three foreign exoenzymes by Cme is remarkable, but so too is the indication of an alternative secretion process in rich culture conditions. When not transiting the T2SS, we suggest that Rso exoenzymes are probably selectively packaged into outer membrane vesicles. Phylogenetic analysis of T2SS proteins supports the existence of at least three T2SS subfamilies, and we propose that Cme, as a representative of the Betaproteobacteria, could become a new useful model system for studying T2SS substrate specificity.

Expression and Secretion of Heterologous Protein in Yeast

  • Kim, Moo-Kyum;Song, Moo-Young;Yu, Myeong-Hee;Yu, Myeong-Hee;Park, Hee-Moon;Kim, Jinmi
    • Korean Journal of Microbiology
    • /
    • v.30 no.2
    • /
    • pp.108-112
    • /
    • 1992
  • To investigate the expression and the secretion of heterologous proteins in yeast, we constructed an yeast secretion vector and produced a human secretory protein, .alpha.-1-antitrypsin (.alpha.-1-AT), from yeast cells. The secretion vector pGAT8 was constructed by inserting the signal sequence of yeast acid phosphatase gene (PH05) into the .alpha.1-AT expression vector pGAT6 which contained .alpha.-1-AT cDNA fused to GAL10-CYC1 promotor. The .alpha.-1-AT was produced efficiently in the yeast cells transformed with plasmid pGAT8, which was onfirmed both by the .alpha.-1-AT activity assay and by the immunoblot method using .alpha.-1-AT antibody. We also showed the secretion of .alpha.-1-AT into the culture media and into the periplasmic space by immunoblot.

  • PDF

Periplasmic Expression of a Recombinant Antibody (MabB9) in Escherichia coli

  • Chang, Hae-Choon;Kwak, Ju-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.299-304
    • /
    • 1997
  • Expression in the periplasm of Escherichia coli of cloned heavy and light chain cDNAs for Fab fragment of a murine monoclonal antibody MabB9 (${\gamma}2b$, K), specific for human plasma apolipoprotein B-100 of LDL, was studied. For the purpose, a vector for two-cistronic expression of the heavy chain cDNA, at the 5' terminus, and light chain cDNA, at the 3' terminus, was constructed using the signal sequences, pelB (for heavy chain) and ompA (for light chain) in a pET vector system. The constructed vector was transformed into E. coli BL21(DE3). The expressed heavy chain (25 kDa) and light chain (23 kDa) of the antibody molecule were detected in total cell extracts as well as in the periplasmic extracts of E. coli.

  • PDF

Production of Periplasmic Space-Secreted Organophosphorus Hydrolase from Recombinant Escherichia coli for Degradation of Environmental Toxic Organophosphate Compounds (환경 독성 유기인 화합물 분해를 위하여 재조합 대장균에서 세포내 간극으로 분비된 Organophosphorus Hydrolase의 생산)

  • Choi, Suk Soon;Seo, Sang Hwan;Kang, Dong Gyun;Cha, Hyung Joon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.3
    • /
    • pp.89-96
    • /
    • 2005
  • In the present work, production of organophosphorus hydrolase (OPH) that is secreted in periplasmic space of recombinant Escherichia coli was performed for degradation of environmental toxic organophosphate compounds, paraoxon. The optimal conditions for enhancement of OPH production were 1.0 mM isopropyl-${\beta}$-D-thiogalactopytanoside (IPTG), 0.25 mM $Co^{2+}$, and 0.1 mM ethylenediamine tetraacetate (EDTA). Under these culture conditions, the maximum OPH production was $174Unit/L{\cdot}OD$. In addition, 1 mM of paraoxon was completely degraded by OPH. These results can be used as a bioremediation tool for removal of environmental toxic organophosphate compounds remaining in soil and aquatic environment.

  • PDF