• Title/Summary/Keyword: perfusion culture

Search Result 56, Processing Time 0.033 seconds

Expression and Secretion of the Insulin-like Growth Factor System Components by Pig Liver Cells

  • Kim, I.;Jin, E.J.;Baik, K.;Park, C.H.;Kim, W.K.;Kang, C.W.;Ko, Y.;Jang, I.;Choi, W.S.;Lee, C.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.9
    • /
    • pp.1244-1251
    • /
    • 2008
  • The aim of the present study was to delineate the expression and secretion of insulin-like growth factor (IGF) system components by pig liver cells. Hepatocytes were prepared from 3-wk-old weanling piglets following a two-step collagenase perfusion procedure, after which the cells were incubated for 24 or 48 h at a density of $2{\pm}10^5$ cells per 35-mm dish in 2-ml Williams' medium E. The cells were found to express the genes encoding IGF-I, IGF-binding proteins (IGFBPs)-2 and -3 and acid-labile subunit (ALS) by reverse transcription-polymerase chain reaction (RT-PCR) following the culture. However, IGF-I was localized to hepatocytes by immunohistochemical analysis, whereas IGFBP-3 was localized to endothelial cells, but not to hepatocytes. This indicated that the IGFBP-3 gene expression detected by RT-PCR was likely to have been contributed by unidentified non-parenchymal cells that had not been removed during the hepatocyte preparation. The conditioned culture medium (CCM) of the cells contained immunoreactive IGF-I and IGF-II, with the latter being seven-fold more abundant than the former. The CCM also contained 43-, 40-, 34-, 31-kDa doublet and 26-kDa IGFBPs as examined by Western ligand blotting. The 40-, 34- and 31-kDa doublet IGFBPs were approximately three-fold as abundant as the 43- and 26-kDa IGFBPs. Moreover, the 43- and 40-kDa doublet and the 34-kDa IGFBPs were immunoprecipitable with IGFBP-3 and IGFBP-2 antibodies, respectively. Overall, these results are similar to those known in the rat, which suggests that the IGF system components are likely to be expressed and secreted in pig liver in a manner similar to that in rat liver.

Effects of Estradiol and Pituitary Hormones on in vitro Vitellogenin Synthesis in the Eel, Anguilla japonica (뱀장어의 in vitro Vitellogenin 합성에 대한 Estradiol과 뇌하수체 호르몬의 영향)

  • KWON Hyuk-Chu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.2
    • /
    • pp.282-290
    • /
    • 1997
  • Hepatocytes of Anguilla japonica have been prepared using a collagenase perfusion technique. The isolated cells attached efficiently to fibronectin-coated culture dishes and subsequently formed monolayers in serum-free medium. These cultures maintained in appropriate medium at least for 10 days with minimal cell loss. The effects of estradiol and pituitary hormones on vitellogenin (Vg) synthesis were examined in primary hepatocyte culture of the immature eels. In fish, as in other oviparous vertebrates, estrogen is a major inducer of Vg synthesis. However, $estradiol-17\beta(E_2)$ alone was insufficient to induce Vg synthesis in cultures of eel hepatocytes. Combination of $E_2$ with growth hormone (GH) and/or prolactin (PRL) markedly stimulated Vg synthesis. Even in cultures exposed to $E_2$ or precultured without hormones for 8 days, $E_2$ alone could not fully induce Vg synthesis. The synthesis of Vg was dramatically increased when hepatocytes were cultured in medium supplemented with $E_{2}+GH+PRL$ for 6 days. At this point, even though GH and/or PRL were eliminated from the medium, Vg synthesis was not influenced by these factors during culture of further 3 days. These results indicate that pituitary hormones, in particular GH and PRL, play important roles in the regulation of Vg synthesis in primary cultures of eel hepatocytes.

  • PDF

Establishment of Purification and Incubation Conditions of Leydig Cells for Screen Endocrine Disruptors Altering Steroidogenesis (스테로이드 합성을 교란하는 내분비계장애물질 검색을 위한 라이디히 세포 분리 및 배양조건 확립)

  • Kang Il-Hyun;Kang Tae-Seok;Kang Ho-Il;Moon Hyun-Ju;Kim Tae-Sung;Ki Ho-Hyun;Ryu Hye-Won;Sin Jae-Ho;Dong Mi-Sook;Han Soon-Young;Kim Seung-Hee;Hong Jin-Hwan
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.2
    • /
    • pp.53-58
    • /
    • 2006
  • Normally, environmental toxicants are classified as endocrine disruptors if they interfere with regulation of cellular function by endogeneous steroids through inhibition of receptor binding and/or transcriptional activation. So, many studies have been performed about agonist/antagonist of hormone receptor to study mechanisms of endocrine disruptors. If toxicants affect steroid biosynthesis and/or degradation and alter hormone homeostasis, these also are classified as endocrine disruptors. But there are not many studies of the mechanisms of endocrine disruptors on the basis of alteration of steroid biosynthesis and/or degradation. Isolation and culture of Leydig cells from testis is one of methods for the steroidogenesis screening assays to evaluate a substance for altering steroidogenesis. Leydig cells were harvested using the method described by Klinefelter with modifications. Leydig cells were purified by perfusion of testis and incubation ($34^{\circ}C$, 80cycles/minute, 20 minutes) with collagenase (0.25 mg/kg), centrifugal elutriation, percoll gradient centrifugation and BSA multidensity gradient centrifugation. To confirm if this method is one of appropriate tools to evaluate a substance for altering steroidogenesis, ketoconazole, positive control was administered to purified Leydig cells. Ketoconazole ($10^{-8}M$ and above) significantly reduced testosterone production in purified Leydig cells. From above results, we suggest that this method for steroidogenesis screening assay appears to be a appropriate tool to detect suspected compounds for altering steroidogenesis.

  • PDF

The Effects of Muscle Cell Transplantation into the Hearts of the Hamsters with a Dilated Cardiomyopathy (배양한 근육세포를 확장성 심근증을 가진 햄스터 심장에 이식 후 심장기능의 변화연구)

  • 유경종;임상현;송석원;홍유선;박현영
    • Journal of Chest Surgery
    • /
    • v.35 no.5
    • /
    • pp.336-342
    • /
    • 2002
  • Background: Recently, cell transplantation has been extensively investigated to improve heart function in dysfunctional heart. This study was designed to compare the effects of smooth muscle cells (SMC) and heart cells (HC) transplantation in dilated cardiomyopathic hamsters. Material and Method: HC and SMC were isolated from heart and ductus deferens of BIO 53.58 hamsters, and cultured for transplantation. HC and SMC or culture medium were transplanted into the left ventricle of 17 weeks old adult hamsters in HC transplanted (HCTx), SMC transplantation (SMCTX), and control groups (Con) (N = 10 each). Cyclosporine (5 mg/Kg) was administered subcutaneously for HCTx. Sham operated hamsters (N=10) underwent the surgery but did not receive an injection. At 4 weeks after transplantation, heart function was evaluated in all groups using a Langendorff perfusion apparatus. Result: Histology showed severe focal myocardial necrosis in all groups. HCTx and SMCTx formed huge muscle tissue in dilated myocardium. SMCTx and HCTx had better heart function than Con and sham (p<0.01). And SMCTx had better peak systolic pressure (p<0.05) antral developed pressure (p<0.05) than HCTx. But sham and Con did not any statistical make difference. Conclusion: SMCTx and HCTx formed muscle tissue and improved ventricular function in hamsters with dilated cardiomyopathy And SMCTx showed better heart function in peak systolic pressure and developed pressure than HCTx.

Effect of Calvarial Cell Inoculated Onto the Biodegradable Barrier Membrane on the Bone Regeneration (흡수성 차폐막에 접목된 두개관골세포의 골조직 재생에 미치는 영향)

  • Yu, Bu-Young;Lee, Man-Sup;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.483-509
    • /
    • 1999
  • Biodegradable barrier membrane has been demonstrated to have guided bone regeneration capacity on the animal study. The purpose of this study is to evaluate the effects of cultured calvarial cell inoculated on the biodegradable barrier membrane for the regeneration of the artificial bone defect. In this experiment 35 Sprague-Dawley male rats(mean BW 150gm) were used. 30 rats were divided into 3 groups. In group I, defects were covered periosteum without membrane. In group II, defects were repaired using biodegradable barrier membrane. In group III, the defects were repaired using biodegradable barrier membrane seeded with cultured calvarial cell. Every surgical procedure were performed under the general anesthesia by using with intravenous injection of Pentobarbital sodium(30mg/Kg). After anesthesia, 5 rats were sacrificed by decapitation to obtain the calvaria for bone cell culture. Calvarial cells were cultured with Dulbecco's Modified Essential Medium contained with 10% Fetal Bovine Serum under the conventional conditions. The number of cell inoculated on the membrane were $1{\times}10^6$ Cells/ml. The membrane were inserted on the artificial bone defect after 3 days of culture. A single 3-mm diameter full-thickness artificial calvarial defect was made in each animal by using with bone trephine drill. After the every surgical intervention of animal, all of the animals were sacrificed at 1, 2, 3 weeks after surgery by using of perfusion technique. For obtaining histological section, tissues were fixed in 2.5% Glutaraldehyde (0.1M cacodylate buffer, pH 7.2) and Karnovsky's fixative solution, and decalcified with 0.1M disodium ethylene diaminetetraacetate for 3 weeks. Tissue embeding was performed in paraffin and cut parallel to the surface of calvaria. Section in 7${\mu}m$ thickness of tissue was done and stained with Hematoxylin-Eosin. All the specimens were observed under the light microscopy. The following results were obtained. 1 . During the whole period of experiment, fibrous connective tissue was revealed at 1week after surgery which meant rapid soft tissue recovery. The healing rate of defected area into new bone formation of the test group was observed more rapid tendency than other two groups. 2 . The sequence of healing rate of bone defected area was as follows ; test group, positive control, negative control group. 3 . During the experiment, an osteoclastic cell around preexisted bone was not found. New bone formation was originated from the periphery of the remaing bone wall, and gradually extended into central portion of the bone defect. 4 . The biodegradable barrier membrane was observed favorable biocompatibility during this experimental period without any other noticeable foreign body reaction. And mineralization in the newly formed osteoid tissue revealed relatively more rapid than other group since early stage of the healing process. Conclusively, the cultured bone cell inoculated onto the biodegradable barrier membrane may have an important role of regeneration of artificial bone defects of alveolar bone. This study thus demonstrates a tissue-engineering the approach to the repair of bone defects, which may have clinical applications in clinical fields of the dentistry including periodontics.

  • PDF

Identification of Antagonistic Bacteria, Pseudomonas aurantiaca YC4963 to Colletotri­chum orbiculare Causing Anthracnose of Cucumber and Production of the Antibiotic Phenazine-l-carboxylic acid (Colletotrichum orbiculare에 대한 길항세균 Pseudomonas aurantiaca YC4963의 분리 동정 및 항균물질 Phenazine-1-carboxylic acid의 생산)

  • Chae Hee-Jung;Kim Rumi;Moon Surk-Sik;Ahn Jong-Woong;Chung Young-Ryun
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.342-347
    • /
    • 2004
  • A bacterial strain YC4963 with antifungal activity against Colletotrichum orbiculare, a causal organism of cucumber anthracnose was isolated from the rhizosphere soil of Siegesbeckia pubescens Makino in Korea. Based on physiological and biochemical characteristics and 16S ribosomal DNA sequence analysis, the bac­terial strain was identified as Pseudomonas aurantiaca. The bacteria also inhibited mycelial growth of several plant fungal pathogens such as Botrytis cinerea, Fusarium oxysporum and Rhizoctonia solani on PDA and 0.1 TSA media. The antifungal activity was found from the culture filtrate of this isolate and the active compound was quantitatively bound to XAD adsorption resin. The antibiotic compound was purified and identified as phenazine-l-carboxylic acid on the basis of combined spectral and chemical analyses data. This is the first report on the production of phenazine-l-carboxylic acid by Pseudomonas aurantiaca.