• Title/Summary/Keyword: performance-based fire engineering design

Search Result 221, Processing Time 0.053 seconds

Performance Based Fire Engineering in the UK

  • Plank, Roger
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper reviews the recent developments in fire engineering and the design approaches which are being used in the UK, compared with traditional prescriptive solutions. The research background which has underpinned this is briefly summarised, and the benefits of these more advanced methods are discussed. The focus is on structural fire engineering, but some consideration of modelling fires is also included. Some of the more commonly used design tools are discussed, together with the relative benefits they offer. The use of these more advanced approaches is then outlined in the context of which building types might be most suitable, and a number of case studies are included to illustrate this. Likely future developments are also discussed.

Experimental Study on Limiting Temperatures of Structural Beams made with Structural Steel According to Load Ratios (하중비에 따른 강재 보의 한계온도에 관한 실험적 연구)

  • Kwon, In-Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.581-588
    • /
    • 2010
  • Recently the requirements of the buildings built with structural steel were increased in terms of structural stabilities and fire resistance at severe fire conditions. To meet the building regulations of fire resistance, a fire design is needed. This is of a prescriptive method and a performance engineering based method. Recently a simple calculation method as one of performance based engineering method is very popular because of its ease for an application in building built with structural steel. But, in Korea the performance based engineering method is not allowed yet. Thus it is needed to make a guideline for the performance based engineering method. The purpose of this study is to establish the limit temperature derived from structural beams made with both a H-section and a H-section filled with concrete at the web and derived the limit temperatures from beams made with H-sections and found out that the limit temperatures from two kinds of specimens depended on the applied loads and the specimens filled with the concrete represented 3 hour fire resistance in the range of 80%, 60%, and 50% of the maximum load.

A Study on Perfomance Based Evacuation Plan for a Large Indoor-Arena (대규모 실내경기장의 성능위주 방재계획에 관한 연구)

  • Choi, Yong-Seok;Kim, Hyung-Keun;Lee, Kyoo-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.10
    • /
    • pp.687-698
    • /
    • 2011
  • In this study, it was analyzed by a numerical analysis that plan/design considerations for ensuring the spectator safety of large arena audiences in a fire emergency evacuation plan. The latest issue, the 'performance-based design', fire and evacuation plan is important. But nowadays 'Specification-based design' is in common. In evacuation simulation, congestion of exit and aisle is ignored because only evacuation time of large-space is mainly analyzed. In smoke flow,'smoke filling effect' tends to be overrated. From now on, when design a field house, it is needed not 'smoke filling effect' and 'large-space evacuation' analysis, but analyzing 'whole building evacuation time' for ensuring fire evacuation safety of spectator.

A Study on Performance-Based Design Enforcement (성능위주설계 시행의 개선방안)

  • Lee, Yang-Ju;Ko, Kyoung-Chan;Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.68-73
    • /
    • 2012
  • Performance-based design (PBD) for large scale high rise buildings has been enforced to secure fire and evacuation safety since July 1, 2011. As various types of trial and error were expected in the early stage, to suggest solutions to the problems that might be followed by the enforcement, the regulations on PBD were reviewed and a questionnaire survey to fire protection specialists was carried out. It was confirmed that PBD is required for large scale apartment buildings, and specific and detail criteria for PBD methodology and evaluations, education for PBD to personnel who design and evaluate are also in need.

A Development of Fire Training Simulator Based on Computational Fluid Dynamics Simulation (전산수치해석 기반 화재훈련 VR 시뮬레이터의 개발)

  • Cha, Moo-Hyun;Lee, Jai-Kyung;Park, Seong-Whan;Choi, Byung-Il
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.4
    • /
    • pp.271-280
    • /
    • 2009
  • An experience based training system concerning various fire situations which may result many casualties has been required to make rapid decision and improve the responsiveness. Recently, the necessity of virtual reality (VR) based training system which can replace a dangerous full-scale fire training and be easily adopted to the training or evaluation process is increasing. This study constructed tile virtual environment according to pre-defined scenarios, utilized the FDS(Fire Dynamics Simulator), three dimensional computational fire analysis program, to derive numerically simulated data on the propagation of fire. Finally, by visualizing the realistic fire and smoke behavior through virtual reality technique and implementing real-time interaction, we developed a VR-based fire training simulator. Also, in order to ensure the sense for tile real of a virtual world and reaI-time performance at the same time, we proposed appropriate data processing and space search algorithms, demonstrate d the value of proposed method through experiments.

APPLICATION OF FIRE RESEARCH TO BUILDING FIRE SAFETY DESIGN - CURRENT BENEFITS AND FUTURE NEEDS

  • Bressington, Peter;Johnson, Peter
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.392-403
    • /
    • 1997
  • There is a strong international move towards performance based fire regulations for buildings with New Zealand and Australia at the forefront of research in this fold. The reform of regulations is thought to offer more innovation and flexibility in building design and greater cost effectiveness in construction. An important part of the research in this area is related to the development of agreed approaches to fire safety design, such as the Fire Code Reform Centre's "Fire Engineering Guidelines" or New Zealand's "Fire Engineering Design Guide". Such design process documents have incorporated or referenced much of the latest research in areas such as: tenability criteria fire compartment models egress models risk assessment. Use of such design guidelines or equivalents in major projects in countries such as Hong Kong and Australia have highlighted where fro engineering can offer real benefits to building designers and ultimately building owners and operators. However, there is still much research to be done and use of a systematic, logical design approach clearly identifies where design data or modelling techniques are still urgently required. Such areas are: fire growth rates and peak heat release rates for non-residential occupancies pre-movement times related to egress experimental validation and limits of applicability of CFD and other compartment Ire models probability/reliability data on fire protection systems for risk based analysis. Examples from case studies will be shown where lack of such research and poor judgement can lead to inferior design solutions or where unnecessarily conservative designs can lead to cost excesses. In summary, the link between Ire engineering designers and the research community is very important to highlight areas of fire research that will have the most benefit to the building and construction industry.nstruction industry.

  • PDF

Measurements of the Heat Release Rate and Fire Growth Rate of Combustibles for the Performance-Based Design - Focusing on the Plastic Fire of Commercial Building (성능위주설계를 위한 가연물의 열발생률 및 화재성장률 측정 - 판매시설의 플라스틱 화재를 중심으로 -)

  • Jang, Hyo-Yeon;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.55-62
    • /
    • 2018
  • To improve the prediction result with enhanced reliability of domestic Performance-Based Design (PBD), actual scale fire tests were carried out on products made of plastics from sales facility combustibles. The commercial buildings were separated into single and multiple combustibles for the experimentation of fire spread caused by the sales shelves where the various combustible materials are displayed. A according to the maximum heat release rate, exposed area and weight of the combustible material, the results revealed a linear relationship of as 93% and 89%. In addition, analysis of the gas concentrations for various combustibles showed that $CO_2$ has a linear relationship, whereas the CO concentration indicated exponential function. These results can be applied to reliable fire source information in PBD of plastic fire source in commercial buildings. This may be applied as fire source information representative of a plastic fire in commercial buildings through additional experiment using the area of the shelf in actual commercial buildings.

A Study on the Fire Resistance Performance of Reinforced Concrete Columns according to Axial Load Ratio (축력비 조건에 따른 철근콘크리트기둥의 내화성능에 관한 연구)

  • Hwang, Kyu-Jae;Cho, Bum-Yean;Yeo, In-Hwan
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.26-31
    • /
    • 2013
  • This study, to evaluate the technology of the fire resistance design of Reinforced Concrete columns based on fire resistance performance design, was suppose to use as basic data for performance design through a measure of temperature and deformation using heat transfer analysis and Heat-load test of the Reinforced Concrete columns as parameter is the axial load ratio. In accordance with axial load without eccentricity, the load ratio of 0.30, 0.35, 0.40 and 0.47 were imposed on columns. As a result of this study, 0.40 or more of axial load ratio can be ensured that the fire resistance performance was considered satisfactory.

Application of CFD Method to Performance Prediction of Fire-Suppression System for Electric Power Utilities (발전설비용 소화시스템의 성능 예측을 위한 CFD기법 적용 연구)

  • Chung, H.T.;Bae, K.Y.;Kim, C.H.;Jeong, I.S.;Bae, J.S.;Han, Y.S.;Kim, J.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.296-299
    • /
    • 2008
  • In the present research, the exclusive analysis system based on the CFD method were suggested to predict the fire-suppression performance of water mist fire-suppression equipments for design applications. The computing scope is ranged from starting pump to fire-suppression equipments, composed of three parts that calculation of flow rate and pressure distribution at each nozzle, examining of spray performance and predicting of fire-suppression performance in the fire space. Application were done to the fire-suppression system for electric power generation plants. The results were analyzed by comparison between numerical results and initial design conditions in terms of thermal and fluid mechanics.

  • PDF

Parametric Study on Water Mist Nozzles for Fire Suppression System Based on CFD Methods

  • Jung, In-Su;Park, Tae-Gyu;Chung, Hee-Taeg
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.124-130
    • /
    • 2010
  • Numerical simulation has been performed to investigate the mist flow characteristics through the fire suppression nozzles for the design purposes. The commercial softwares, FLUENT and the fire dynamic simulator, FDS with the proper modelings were chosen as the numerical tools. In order to find optimal conditions in sense of the main performances of nozzles, the spray characteristics were analyzed both inside and outside of the nozzles. Geometric factors of the injecting orifices, i.e., diameter and chamfered angle were chosen as the simulation parameters for design application. From the present numerical results, 1.0c nozzles, whose orifice-diameter was 1 mm, having the chamfered angles were shown as the best performance of the fire suppression.