• Title/Summary/Keyword: performance-based design method

Search Result 3,678, Processing Time 0.035 seconds

Seismic Design Method for Structural Walls Based on Energy Dissipation Capacity (에너지 소산능력을 고려한 전단벽의 내진설계)

  • 박홍근;엄태성;정연희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.247-257
    • /
    • 2002
  • Recently, performance-based analysis/design methods such as the capacity spectrum method and the direct displacement-based design method were developed. In these methods, the estimation of energy dissipation capacity due to inelastic behavior of RC structures depends on empirical equations which are not sufficiently accurate. On the other hand, in a recent study, a simplified method for evaluating energy dissipation capacity was developed. In the present study, based on the evaluation method, a new seismic design method for flexure-dominated RC walls is developed. In determination of seismic earthquake load, the proposed design method can address variation of the energy dissipation capacity with design parameters such as dimensions and shapes of cross-sections, axial force, and reinforcement ratio and arrangement. The proposed design method is compared with the current performance-based design methods and the applicability of the proposed method is disscussed.

  • PDF

Design of supplemental viscous dampers in inelastic SDOF system based on improved capacity spectrum method

  • Li, Bo;Liang, Xing-Wen
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.541-554
    • /
    • 2007
  • A simplified yet effective design procedure for viscous dampers was presented based on improved capacity spectrum method in the context of performance-based seismic design. The amount of added viscous damping required to meet a given performance objective was evaluated from the difference between the total demand for effective damping and inherent damping plus equivalent damping resulting from hysteretic deformation of system. Application of the method is illustrated by means of two examples, using Chinese design response spectrum and mean response spectrum. Nonlinear dynamic analysis results indicate that the maximum displacements of structures installed with supplemental dampers designed in accordance with the proposed method agree well with the given target displacements. The advantage of the presented procedure over the conventional iterative design method is also highlighted.

Statistical Performance Estimation of a Multibody System Based on Design Variable Samples (설계변수 표본에 근거한 다물체계 성능의 통계적 예측)

  • Choi, Chan-Kyu;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1449-1454
    • /
    • 2009
  • The performance variation of a multibody system is affected by a variation of various design variables of the system. And the effects of design variable variations on the performance variation must be considered in design of a multibody system. Accordingly, a variation analysis of a multibody system needs to be conducted in design of a multibody system. For a variation analysis of a performance, population mean and variance which are called statistical parameters of design variables are needed. However, an evaluation of statistical parameters of design variables is impossible in many practical cases. Therefore, an estimation of statistical parameters of the performance based on sample mean and variance which are called statistic of design variables is needed. In this paper, the variation analysis method for a multibody system based on design variable samples was proposed. And, using the proposed method, a variation analysis of the vehicle ride comfort based on sample statistic of design variables was conducted.

Decision Making Method based on Function and Performance Matrix Assessment Considering Design Change

  • Oh, Youngsuk;Chun, Jaeyoul;Cho, Jaeho
    • Architectural research
    • /
    • v.17 no.3
    • /
    • pp.83-91
    • /
    • 2015
  • A comprehensive understanding of functions and performances enables a selection of appropriate alternatives to the existing design and can prevent defective design. A performance-based design quality management can ensure successful project completion. This study proposes a new model for design quality management in order to prevent defective design and to minimize design change. The new quality management model defines the requirement about function and performance based on technical characteristic, and assesses suitability for design alternatives. This study attempts to propose a quality matrix assessment method that can compare the alternative design and requirements defined with the new quality management model. This method can judge conformity and suitability of design quality in accordance with the requirements configured.

A Study for the Performance Based Strengthening Design of Underground Box Structure in Urban Railway (도시철도 지하박스 구조물의 내진성능 보강설계 연구)

  • Kwon, Min-Ho;Kim, Si-Kyeok;Kim, Ki-Hong;Jang, Young-Du;Kim, Jin-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1143-1148
    • /
    • 2011
  • In this study, seismic structural reinforcement are carried out, based on the estimated seismic performance of underground box structures in urban railway, and displacement based design method was developed to enhance seismic performance of structures. New seismic reinforcement design method is proposed and compared with existing design methods. And presented an overview of the developed design methodology through a design example to verify the validity of that methods.

  • PDF

Application of Satisfaction Curve to Concrete Material

  • Kim, Jang-Ho-Jay;Phan, Hung-Duc;Jeong, Ha-Sun;Kim, Byung-Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.821-824
    • /
    • 2008
  • This paper presents a systematic approach for estimating material performance of concrete mixture design based on satisfaction curves developed from statistical evaluation of existing or newly obtained material property related data. In performance based material design (PBMD) method, concrete material used for construction of a structure is designed considering a structure's specified performance requirements based on its usage and characteristics such as environmental conditions, structure types, expected design life, etc.Satisfaction curves express the probabilities that one component of substrates (i.e., aggregate size, cement content, etc) of concrete mixture will sustain different criterion value for a given concrete mixture design. This study presents a statistical analysis method for setting up concrete material parameter versus concrete criterion relationships in the form of satisfaction curves and for estimating confidence bounds on these satisfaction curves. This paper also presents an analysis method to combine multiple satisfaction curves to form one unique satisfaction curve that can relate the performance of concrete to a single evaluating value. Based on several evaluated mixture design examples for various material properties, the validity of the proposed method is discussed in detail.

  • PDF

Performance-based plastic design of buckling-restrained braced frames with eccentric configurations

  • Elnaz Zare;Mohammad Gholami;Esmail Usefvand;Mojtaba Gorji Azandariani
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.317-331
    • /
    • 2023
  • The buckling-restrained braced frames with eccentric configurations (BRBFECs) are stable cyclic behavior and high energy absorption capacity. Furthermore, they have an architectural advantage for creating openings like eccentrically braced frames (EBFs). In the present study, it has been suggested to use the performance-based plastic design (PBPD) method to calculate the design base shear of the BRBFEC systems. Moreover, in this study, to reduce the required steel material, it has been suggested to use the performance-based practical design (PBPD) method instead of the force-based design (FBD) method for the design of this system. The 3-, 6-, and 9-story buildings with the BRBFEC system were designed, and the finite element models were modeled. The seismic performance of the models was investigated using two suits of ground motions representing the maximum considered earthquake (MCE) and design basis earthquake (DBE) seismic hazard levels. The results showed that the models designed with the suggested method, which had lower weights compared to those designed with the FBD method, had a desirable seismic performance in terms of maximum story drift and ductility demand under earthquakes at both MCE and DBE seismic hazard levels. This suggests that the steel weights of the structures designed with the PBPD method are about 13% to 18% lesser than the FBD method. However, the residual drifts in these models were higher than those in the models designed with the FBD method. Also, in earthquakes at the DBE hazard level, the residual drifts in all models except the PBPD-6s and PBPD-9s models were less than the allowable reparability limit.

A performance-based design method for chloride-induced cover cracking of RC structures

  • Yang, Dong-Hui;Yi, Ting-Hua;Li, Hong-Nan
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.573-582
    • /
    • 2017
  • Chloride-induced cover cracking will aggravate the performance deterioration for RC structures under the chlorideladen environment, which may endanger the safety of structures and occupants. Traditional design method cannot ensure that a definite performance is satisfied. To overcome the defects, a study on the performance-based design method was carried out in this paper. Firstly, the limit state functions were established for the corrosion initiation and cover cracking. Thereafter, the uncertainty analysis was performed to study the effects of random factors on the time-dependent performances. Partial factor formulae were deduced through the first-order reliability method for performance verification. Finally, an illustrative example was presented and the sensitivity of cover depth to other parameters was carried out. It is found that the uncertainties of the random variables have great effects on the required cover depth. It is demonstrated that the performance-based design method can ensure that the target performance can be satisfied and support to formulate a rational maintenance and repair strategy for RC structures under the chloride environment.

Development and Practice of Performance-Based Seismic Design of High-Rise Buildings in China

  • Xiao Congzhen;Li Jianhui;Li Yinbin;Qiao Baojuan;Sun Chao;Wei Yue;Ding Jiannan
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.209-214
    • /
    • 2023
  • Seismic performance-based design methods are widely used in the field of engineering. This paper introduces the current status of seismic performance-based design methods for high-rise buildings in China, and summarizes latest advancements in seismic performance-based design methods for high-rise buildings in China, with a focus on the design methods based on predetermined yield mode and the design methods based on member ductility requirements. Finally, the development direction of seismic performance-based design method for high-rise buildings is prospected.

Design of LDWS Based on Performance-Based Approach Considering Driver Behaviors (운전자 반응을 고려한 성능기반 기법 적용 차선이탈경보시스템 경보 시점 설계 연구)

  • Kim, Hyung Jun;Yang, Ji Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1081-1087
    • /
    • 2015
  • This article aims to provide a design method of warning thresholds for active safety systems based on the performance-based approach considering driver behaviors. Both positive and negative consequences of warnings are considered, and the main idea is to choose a warning threshold where the positive consequence is maximized, whereas the negative consequence is minimized. The process of the performance-based approach involves: Defining the operating scenarios; setting the trajectory models, including human characteristics; estimating the alert and nominal trajectories; estimating the performance metrics; generating a performance-metric plot; and determining the alert thresholds. This paper chose a lane-departure warning system as an example to show the usefulness of the performance-based approach. Both human and sensor characteristics were considered in the system design, and this paper provided a quantitative method to include human factors in designing active safety systems.