• Title/Summary/Keyword: performance joint

검색결과 2,318건 처리시간 0.037초

Experimental Study on Seismic Behavior of Roof Joint

  • Cui, Yao;Gao, Xiaoyu;Liu, Hongtao;Yamada, Satoshi
    • International journal of steel structures
    • /
    • 제18권4호
    • /
    • pp.1373-1383
    • /
    • 2018
  • Experimental study was conducted to investigate the seismic behavior of roof joint. Eight full-scale specimens were tested considering the effects of axial force, joint height, hole shape of base plate and edge distance of concrete on the failure mode and resistance capacity of roof joint. With the increase of axial force, the hysteretic curves were fuller. The mechanical model of roof joint change from bending to shear. With the increase of joint height, the ultimate strength of roof joint decreased. If the hole shape of base plate changed from circle to loose, the slip behavior of roof joint appeared and the ultimate strength of roof joint decreased. The damage of edge concrete may occur if the edge distance of concrete was not big enough.

Comparison with Load Transfer Efficiency for Joint Types in Airport Concrete Pavements (줄눈형식에 따른 공항 콘크리트 포장 하중전달율 비교)

  • An, Ji-Hwan;Jeon, Sung-Il;Kwon, Soo-Ahn;Kim, Min-Woo
    • International Journal of Highway Engineering
    • /
    • 제16권3호
    • /
    • pp.9-20
    • /
    • 2014
  • PURPOSES : This study is to compare load transfer efficiency of key joint and dowel joint for airport concrete pavement. METHODS : As AC150/5320-6D of FAA's [Advisory Circular] was changed into AC150/5320-6E, Key joint type of rigid pavement were excluded from Construction Joints. LTE(Load Transfer Efficiency) of dowel joint and key joint were compared by times and seasons through pavement temperature measurement, ocular investigation and HWD measurement. RESULTS : For the joint performance grade of No. 2(The second) runway of airport, 12% of poor rate was observed in key joint and 2% of poor rate in dowel joint. Poor rate of key joint was increased to 17%, if only No. 3~No. 6 slabs, which are mostly loaded from the airplanes, were applied for the study. In apron area, LTE poor rate of key joint was high in winter, and LTE poor rate of dowel joint was at least above 'Fair' grade. In summer, 'Fair' for key joint, 'Acceptable' for dowel joint appeared. CONCLUSIONS : As results, dowel joint was superior than key joint for LTE. Deviations of seasons and times were smaller in dowel joint's result. And LTE in winter was lower than LTE in summer.

Structural Performance Evaluation of Prestressed Concrete Trapezoidal Girders Using Socket Joint System (소켓연결 방식을 이용한 프리스트레스트 콘크리트 제형 거더의 구조성능 평가)

  • Shim, Won-Bo;Min, Kyung-Hwan;Choi, Hong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제16권11호
    • /
    • pp.7244-7249
    • /
    • 2015
  • In this study, in order to asses the structural performance of trapezoidal PSC girder using a socket joint system and it is possible to calculate the optimized cross-section of the web element tests were carried out for each specimens. we conducted a socket joint performance test, web bending and shear performance tests and all tests were performed at 4 point loading method. The initial crack load of socket joint specimen was significantly lower than the reference specimen but post peak behavior was no significant differences. And the length of the loop joint of the reinforcing bars had no significant effect on the maximum load. As a web shear tests, to obtain a maximum load of the specimen has a prestressing rod reinforced at tension side. As a web flexural tests, to obtain higher diagonal cracking load in specimen of reinforced using prestressing rod than reference specimen.

The Effect of Market Structure on the Performance of China's Banking Industry: Focusing on the Differences between Nation-Owned Banks and Joint-Stock Banks (개혁개방 이후 중국 은행산업의 구조와 성과: 국유은행과 주식제 은행의 차이를 중심으로)

  • Ze-Hui Liu;Dong-Ook Choi
    • Asia-Pacific Journal of Business
    • /
    • 제14권4호
    • /
    • pp.431-444
    • /
    • 2023
  • Purpose - This study applies the traditional Structure-Conduct-Performance (SCP) model from industrial organization theory to investigate the relationship between market structure and performance in China's banking industry. Design/methodology/approach - For analysis, financial data from the People's Bank of China's "China Financial Stability Report" and financial reports of 6 state-owned banks and 11 joint-stock banks for the period 2010 to 2021 were collected to create a balanced panel dataset. The study employs panel fixed-effects regression analysis to assess the impact of changes in market structure and ownership structure on performance variables including return on asset, profitability, costs, and non-performing loan ratios. Findings - Empirical findings highlight significant differences in the effects of market structure between state-owned and joint-stock banks. Notably, increased market competition positively correlates with higher profits for state-owned banks and with lower costs for joint-stock banks. Research implications or Originality - State-owned banks demonstrate larger scale and stability, yet they struggle to respond effectively to market shifts. Conversely, joint-stock banks face challenges in raising profitability against competitive pressures. Additionally, the study emphasizes the importance for Chinese banks to strengthen risk management due to the increase of non-performing loans with competition. The results provide insights into reform policies for Chinese banks regarding the involvement of private sector in the context of market liberalization process in China.

Evaluation of Mechanical Joint Structural Performance through Actual Performance Testing of PC Connections (PC 접합부의 실물 성능실험을 통한 기계식이음 구조성능 평가)

  • Kim, Jae Young;Kim, Yong Nam;Seo, Min Jung;Kim, Beom Jin;Kim, Sung Jig;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제28권3호
    • /
    • pp.129-139
    • /
    • 2024
  • In this study, the SBC system, a new mechanical joint method, was developed to improve the constructability of precast concrete (PC) beam-column connections. The reliability of the finite element analysis model was verified through the comparison of experimental results and FEM analysis results. Recently, the intermediate moment frame, a seismic force resistance system, has served as a ramen structure that resists seismic force through beams and columns and has few load-bearing walls, so it is increasingly being applied to PC warehouses and PC factories with high loads and long spans. However, looking at the existing PC beam-column anchorage details, the wire, strand, and lower main bar are overlapped with the anchorage rebar at the end, so they do not satisfy the joint and anchorage requirements for reinforcing bars (KDS 41 17 00 9.3). Therefore, a mechanical joint method (SBC) was developed to meet the relevant standards and improve constructability. Tensile and bending experiments were conducted to examine structural performance, and a finite element analysis model was created. The load-displacement curve and failure pattern confirmed that both the experimental and analysis results were similar, and it was verified that a reliable finite element analysis model was built. In addition, bending tests showed that the larger the thickness of the bolt joint surface of the SBC, the better its structural performance. It was also determined that the system could improve energy dissipation ability and ductility through buckling and yielding occurring in the SBC.

A Study on Performance of Steel Monocell Expansion Joints (강재형 모노셀 신축이음장치 성능 연구)

  • Kim, Yong-Hoon;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제20권5호
    • /
    • pp.502-509
    • /
    • 2019
  • Studies have been made on performance evaluation of expansion joint systems for an ordinary highway or road bridge. However little study has been made for runway connection bridges at airports. A study on performance evaluated from computer code analysis and shrinkage, extension, and compression repetition tests based on KS F 4425 is conducted to a newly developed expansion joint system which has been installed in a runway connection bridge at Incheon Airport Extension 2 Construction Site. The MIDAS computer code is used to analyze the performance before the manufacture of the mock-up of expansion joint system on the basis of design requirements. Tests based on the KS F 4425 of 2001 year-version are conducted for the mock-up. Domestic codes and standards to validate the performance of the expansion joint system in a connection bridge have been developed for a vehicle. However the expansion joint system tested in this study is installed in a runway connection bridge for an aircraft. Conservatively the heaviest one among airplanes departing and landing at Incheon Airport is assumed level-F $468.4kN/m^2$ and adopted for the tests and analyses in this study. KS F 4425 method is selected for the shrinkage, extension, and compression repetition tests. No remarkable problem was observed for the 2,500-cycle shrinkage and extension and two million-cycle repeatition load tests. The results of this study are expected to contribute to establishment of code and standard for the performance validation of an expansion joint system installed in a runway connection bridge for an aircraft by providing performance test results and computer analysis results based on finite element methods.

Seismic behavior of rebar-penetrated joint between GCFST column and RGC beam

  • Li, Guochang;Fang, Chen;An, Yuwei;Zhao, Xing
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.547-567
    • /
    • 2015
  • The paper makes the experimental and finite-element-analysis investigation on the seismic behavior of the rebar-penetrated joint between gangue concrete filled steel tubular column and reinforced gangue concrete beam under low cyclic reversed loading. Two specimens are designed and conducted for the experiment to study the seismic behavior of the rebar-penetrated joint under cyclic loading. Then, finite element analysis models of the rebar-penetrated joint are developed using ABAQUS 6.10 to serve as the complement of the experiment and further analyze the seismic behavior of the rebar-penetrated joint. Finite element analysis models are also verified by the experimental results. Finally, the hysteretic performance, the bearing capacity, the strength degradation, the rigidity degradation, the ductility and the energy dissipation of the rebar-penetrated joint are evaluated in detail to investigate the seismic behavior of the rebar-penetrated joint through experimental results and finite element analysis results. The research demonstrates that the rebar-penetrated joint between gangue concrete filled steel tubular column and reinforced gangue concrete beam, with full and spindle-shaped load-displacement hysteretic curves, shows generally the high ductility and the outstanding energy-dissipation capacity. As a result, the rebar-penetrated joint exhibits the excellent seismic performance and meets the earthquake-resistant requirements of the codes in China. The research provides some references and suggestions for the application of the rebar-penetrated joint in the projects.

Robust Adaptive Fault-Tolerant Control for Robot Manipulators with Performance Degradation Due to Actuator Failures and Uncertainties (구동기 고장과 불확실성으로 인한 성능 저하를 가지는 로봇 매니퓰레이터에 대한 강인한 적응 내고장 제어)

  • 신진호;백운보
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • 제53권3호
    • /
    • pp.173-181
    • /
    • 2004
  • In normal robot control systems without any actuator failures, it is assumed that actuator torque coefficients applied at each joint have normally 1's all the time. However, it is more practical that actuator torque coefficients applied at each joint are nonlinear time-varying. In other words, it has to be considered that actuators equipped at joints may fail due to hardware or software faults. In this work, actuator torque coefficients are assumed to have non-zero values at all joints. In the case of an actuator torque coefficient which has a zero value at a joint, it means the complete loss of torque on the joint. This paper doesn't deal with the case. As factors of performance degradation of robots, both actuator failures and uncertainties are considered in this paper at the same time. This paper proposes a robust adaptive fault-tolerant control scheme to maintain the required performance and achieve task completion for robot manipulators with performance degradation due to actuator failures and uncertainties. Simulation results are shown to verify the fault tolerance and robustness of the Proposed control scheme.

Joint disturbance torque analysis for robots and its application in straight line path placement (로봇의 관절외란해석을 이용한 직선궤적 위치결정)

  • ;Choi, Myuoung Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1824-1827
    • /
    • 1997
  • Majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is influenced greatly by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and makes the high speed-high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2DOF planar robot, the conditions for the maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solutioin to the optimal path placement problem is proposed that minimizes the joint disturbance torque are examined. then, a solution to the optimal path placement problem is proposed that minimizes the joint disturbance torque during a straight line motion. the proposed method is illustrated using computer simulation. the proposed solution method cna be applied to the class of robots that are controlled by independent joint sevo control, which includes the vast majority of industrial robots. By minimizing the joint disturbacne torque during the motion, the simple joint servo controlled robot can move with improved path tracking accuracy at high speed.

  • PDF

Comparison of Isometric Knee Extension Torque-Angle Relationship between Taekwondo Athletes and Normal Adults (태권도 선수와 일반인의 등척성 무릎신전 토크-각도 관계 특성 비교 분석)

  • Jo, Gye-Hun;Oh, Jeong-Hoon;Lee, Hae-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • 제25권3호
    • /
    • pp.275-281
    • /
    • 2015
  • Objective : In order for Taekwondo athletes to perform destructive kicking performance, they are expected to have Taekwondo-specific muscle properties such as high muscle strength and power. The purpose of this study was to investigate the joint angle-dependent force-producing property of Taekwondo athletes' knee extensor muscles, which is one of the primary muscle groups involved in kicking performance. Method : Ten Taekwondo male athletes (age: $19.9{\pm}0.7yrs$, height: $180.6{\pm}6.2cm$, body mass: $75.9{\pm}8.9kg$, career: $9.2{\pm}2.9yrs$.) and 10 healthy male non-athletes (age: $26.3{\pm}2.6yrs$, height: $174.2{\pm}4.8cm$, body mass: $72.8{\pm}7.7kg$) participated in this study. Subjects performed maximum isometric knee extension at knee joint angles of $40^{\circ}$, $60^{\circ}$, $80^{\circ}$, and $100^{\circ}$ (the full knee extension was set to $0^{\circ}$) with the hip joint angles of $0^{\circ}$ and $80^{\circ}$ (the full extension was set to $0^{\circ}$). During the contractions, knee extension torque using an isokinetic dynamometer simultaneously with muscle activities of the rectus femoris (RF), and the vastus lateralis (VL) and vastus medialis (VM) using surface electromyography were recorded. Based on the torque values at systematically different knee-hip joint angles, the joint torque-angle relationships were established and then the optimal joint angle for the knee extensor was estimated. Results : The results of this study showed that the isometric knee extension torque values were greater for the Taekwondo athletes compared with the non-athlete group at all hip-knee joint angle combinations (p<.05). When the hip joint was set at $80^{\circ}$, the peak isometric torque was greater for the Taekwondo athletes compared with the non-athlete group ($313.61{\pm}36.79Nm$ and $221.43{\pm}35.92Nm$, respectively; p<.05) but the estimated optimum knee joint angles were similar ($62.33{\pm}5.71^{\circ}$ and $62.30{\pm}4.67^{\circ}$ for the Taekwondo athletes and non-athlete group, respectively). When the hip joint was set at $0^{\circ}$, the peak isometric torque was greater for the Taekwondo athletes compared with the non-athlete group ($296.29{\pm}45.13Nm$ and $199.58{\pm}25.23Nm$, respectively; p<.05) and the estimated optimum knee joint angle was larger for the Taekwondo athletes compared with the non-athlete group ($78.47{\pm}5.14^{\circ}$ and $67.54{\pm}5.77^{\circ}$, respectively; p<.05). Conclusion : The results of this study suggests that, compared with non-athletes, Taekwondo athletes have stronger knee extensor strength at all hip-knee joint angle combinations as well as longer optimum muscle length, which might be optimized for the event-specific required performance through prolonged training period.