• 제목/요약/키워드: performance anomaly

검색결과 290건 처리시간 0.034초

면역 시스템 모델을 기반으로 한 침입 탐지 시스템 설계 및 성능 평가 (Performance Evaluation and Design of Intrusion Detection System Based on Immune System Model)

  • 이종성
    • 한국시뮬레이션학회논문지
    • /
    • 제8권3호
    • /
    • pp.105-121
    • /
    • 1999
  • Computer security is considered important due to the side effect generated from the expansion of computer network and rapid increase of the use of computers. Intrusion Detection System(IDS) has been an active research area to reduce the risk from intruders. We propose a new IDS model, which consists of several computers with IDS, based on the immune system model and describe the design of the IDS model and the prototype implementation of it for feasibility testing and evaluate the performance of the IDS in the aspect of detection time, detection accuracy, diversity which is feature of immune system, and system overhead. The IDSs are distributed and if any of distributed IDSs detect anomaly system call among system call sequences generated by a privilege process, the anomaly system call can be dynamically shared with other IDSs. This makes the IDSs improve the ability of immunity for new intruders.

  • PDF

로그 이상 탐지를 위한 도메인별 사전 훈련 언어 모델 중요성 연구 (On the Significance of Domain-Specific Pretrained Language Models for Log Anomaly Detection)

  • 레리사 아데바 질차;김득훈;곽진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.337-340
    • /
    • 2024
  • Pretrained language models (PLMs) are extensively utilized to enhance the performance of log anomaly detection systems. Their effectiveness lies in their capacity to extract valuable semantic information from logs, thereby strengthening the detection performance. Nonetheless, challenges arise due to discrepancies in the distribution of log messages, hindering the development of robust and generalizable detection systems. This study investigates the structural and distributional variation across various log message datasets, underscoring the crucial role of domain-specific PLMs in overcoming the said challenge and devising robust and generalizable solutions.

모듈레이션 기법을 이용한 잡음에 강인한 선로 전환기의 이상 상황 탐지 (Noise-Robust Anomaly Detection of Railway Point Machine using Modulation Technique)

  • 이종욱;김아용;박대희;정용화
    • 스마트미디어저널
    • /
    • 제6권4호
    • /
    • pp.9-16
    • /
    • 2017
  • 열차의 방향을 기존 방향에서 다른 방향으로 이동시키기 위한 변환 장치인 선로 전환기의 고장은 열차의 탈선 등을 유발시킬 수 있다. 따라서 열차운행의 안전 측면에서 해당 장비에 대한 모니터링은 필수 요소이다. 본 논문에서는 선로 전환기의 구동시 발생하는 소리 정보를 기반으로 잡음에도 강인한 선로 전환기의 이상 상황 탐지시스템을 제안한다. 먼저 제안한 시스템은 소리 센서에서 실시간으로 취득하는 소리 신호에 STFT(Short-Time Fourier Transform)를 적용하여 스펙트로그램을 취득한다. 실제 환경에서 발생하는 잡음의 영향에도 강인한 성능을 보장하기 위하여, 해당 스펙트로그램에 대한 전처리 과정을 수행 후 모듈화 한다. 각각의 모듈에서 평균값과 표준편차를 계산 및 조합하여 특징 벡터로 생성한 후 이진 분류에 뛰어난 성능이 확인된 SVM(Support Vector Machine)에 적용하여 이상 상황을 탐지한다. 실제 선로 전환기의 전환 시 발생하는 소리 데이터를 이용하여 모의실험을 수행한 결과, 제안한 시스템은 잡음이 발생하는 상황에서도 효과적으로 이상 상황을 탐지함을 확인하였다.

스마트그리드 네트워크에서 가용성 보장 메커니즘에 관한 연구: 신호정보를 이용한 공격 및 공격노드 검출 (Study on Availability Guarantee Mechanism on Smart Grid Networks: Detection of Attack and Anomaly Node Using Signal Information)

  • 김미희
    • 정보보호학회논문지
    • /
    • 제23권2호
    • /
    • pp.279-286
    • /
    • 2013
  • 최근 전력 수요의 급증으로 인한 전력난은 효율적 전력 사용을 위한 스마트그리드 기술의 중요성을 부각시키고 있다. 스마트그리드 네트워크의 필수구성요소인 스마트미터기의 가용성 취약점에 대한 실험적 내용이 보고되고 있다. 따라서 안전한 스마트그리드의 실현가능성을 위한 가용성 보호 메커니즘 고안이 필수불가결하다. 본 논문에서는 스마트그리드 구조 및 트래픽패턴의 특징 분석을 통해 스마트미터기에 대한 가용성 침해 공격을 탐지하고, 이상 트래픽을 발생하는 공격노드를 검출할 수 있는 메커니즘을 제안한다. 제안하는 탐지 메커니즘은 공격 탐지를 수행하는 시스템의 탐지 부하를 줄이고 적은 샘플 수에도 높은 탐지율을 제공하기 위해 근사엔트로피 기법을 사용한다. 또한 공격노드가 공격트래픽에서 변경할 수 없는 물리정보(CIR 또는 RSSI 등)를 이용하여 공격 탐지 및 공격노드 검출을 수행한다. 마지막으로 본 논문 제안 기법에 대한 시뮬레이션 결과, 탐지 성능과 실현가능성을 보인다.

겨울철 동아시아 지역 기온의 계절 예측에 눈깊이 초기화가 미치는 영향 (Impact of Snow Depth Initialization on Seasonal Prediction of Surface Air Temperature over East Asia for Winter Season)

  • 우성호;정지훈;김백민;김성중
    • 대기
    • /
    • 제22권1호
    • /
    • pp.117-128
    • /
    • 2012
  • Does snow depth initialization have a quantitative impact on sub-seasonal to seasonal prediction skill? To answer this question, a snow depth initialization technique for seasonal forecast system has been implemented and the impact of the initialization on the seasonal forecast of surface air temperature during the wintertime is examined. Since the snow depth observation can not be directly used in the model simulation due to the large systematic bias and much smaller model variability, an anomaly rescaling method to the snow depth initialization is applied. Snow depth in the model is initialized by adding a rescaled snow depth observation anomaly to the model snow depth climatology. A suite of seasonal forecast is performed for each year in recent 12 years (1999-2010) with and without the snow depth initialization to evaluate the performance of the developed technique. The results show that the seasonal forecast of surface air temperature over East Asian region sensitively depends on the initial snow depth anomaly over the region. However, the sensitivity shows large differences for different timing of the initialization and forecast lead time. Especially, the snow depth anomaly initialized in the late winter (Mar. 1) is the most effective in modulating the surface air temperature anomaly after one month. The real predictability gained by the snow depth initialization is also examined from the comparison with observation. The gain of the real predictability is generally small except for the forecasting experiment in the early winter (Nov. 1), which shows some skillful forecasts. Implications of these results and future directions for further development are discussed.

퍼지 멤버쉽 함수와 신경망을 이용한 이상 침입 탐지 (Anomaly Intrusion Detection using Fuzzy Membership Function and Neural Networks)

  • 차병래
    • 정보처리학회논문지C
    • /
    • 제11C권5호
    • /
    • pp.595-604
    • /
    • 2004
  • 컴퓨터 네트워크의 확대 및 인터넷 이용의 급격한 증가에 따른 최근의 정보통신 기반구조는 컴퓨터 시스템의 네트워크를 통한 연결로 다양한 서비스를 제공하고 있다. 특히 인터넷은 개방형 구조를 가지고 있어 서비스 품질의 보장과 네트워크의 관리가 어렵고, 기반구조의 취약성으로 인하여 타인으로부터의 해킹 및 정보유출 둥의 위협으로부터 노출되어 있다. 보안 위협에 대한 능동적인 대처 및 침입 이후에 동일한 또는 유사한 유형의 사건 발생에 대해 실시간 대응할 수 있는 방법이 중요하게 되었으며 이러한 해결책으로서 침임 탐지 시스템에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 지도학습 알고리즘이 의한 침입탐지 시스템의 성능을 향상시키기 위해서 불확실성을 해결하기 위한 방법인 퍼지를 적용한 뉴로-퍼지 모델의 이상 침입 탐지 시스템에 대해서 연구한다. 즉, 신경망 학습의 전달함수를 불확실성을 해결하기 위한 퍼지 멤버쉽 함수로 수정하여 지도학습을 수행하였다. 제안한 뉴로-퍼지기법을 DARPA 침입 데이터를 이용하여 오용 탐지의 한계성을 극복한 네트워크기반의 이상침입 탐지에 적용하여 성능을 검증하였다.

콘텐츠 기반 무선 센서 네트워크 이상 탐지 기법 (A Contents-Based Anomaly Detection Scheme in WSNs)

  • 이창석;이광휘
    • 전자공학회논문지CI
    • /
    • 제48권5호
    • /
    • pp.99-106
    • /
    • 2011
  • 데이터 중심적인 네트워크인 무선 센서 네트워크는 대량의 센서 노드들이 광범위한 지역에 조밀하게 분산 배치되어 동작한다. 센서 노드들은 일반적으로 열린 환경에서 독립적으로 동작하기 때문에 보안 공격에 취약하다. 본 논문에서는 무선 센서 네트워크를 위한 콘텐츠 기반 이상 탐지 기법을 제안한다. 제안 기법은 무선 센서 네트워크의 특징인 특정한 현상을 여러 개의 센서 노드가 동시에 감지한다는 특성과 센서 노드에서 측정된 데이터인 콘텐츠는 어떤 특정 범위 안에서 변한다는 특성을 이용한다. 제안 기법은 훈련 단계, 적용 단계와 보정 단계로 구성되며 적용 단계에서 거리 기반 이상 탐지(distance-based anomaly detection) 기법을 이용하여 얻게 된 이상치 후보를 보정 단계로 보낸다. 보정 단계는 동일한 현상을 동시에 감지한 센서 노드들의 데이터로 구성된 콘텐츠 테이블과 이상치 후보를 비교, 분석함으로써 이상 탐지 기법의 성능을 향상시킨다. 시뮬레이션을 통해 제안 탐지 기법이 높은 탐지율과 낮은 오탐율을 가진다는 것을 확인할 수 있었다.

LSTM-VAE를 활용한 기계시설물 장치의 이상 탐지 시스템 (Anomaly Detection System in Mechanical Facility Equipment: Using Long Short-Term Memory Variational Autoencoder)

  • 서재홍;박준성;유준우;박희준
    • 품질경영학회지
    • /
    • 제49권4호
    • /
    • pp.581-594
    • /
    • 2021
  • Purpose: The purpose of this study is to compare machine learning models for anomaly detection of mechanical facility equipment and suggest an anomaly detection system for mechanical facility equipment in subway stations. It helps to predict failures and plan the maintenance of facility. Ultimately it aims to improve the quality of facility equipment. Methods: The data collected from Daejeon Metropolitan Rapid Transit Corporation was used in this experiment. The experiment was performed using Python, Scikit-learn, tensorflow 2.0 for preprocessing and machine learning. Also it was conducted in two failure states of the equipment. We compared and analyzed five unsupervised machine learning models focused on model Long Short-Term Memory Variational Autoencoder(LSTM-VAE). Results: In both experiments, change in vibration and current data was observed when there is a defect. When the rotating body failure was happened, the magnitude of vibration has increased but current has decreased. In situation of axis alignment failure, both of vibration and current have increased. In addition, model LSTM-VAE showed superior accuracy than the other four base-line models. Conclusion: According to the results, model LSTM-VAE showed outstanding performance with more than 97% of accuracy in the experiments. Thus, the quality of mechanical facility equipment will be improved if the proposed anomaly detection system is established with this model used.

MLOps workflow language and platform for time series data anomaly detection

  • Sohn, Jung-Mo;Kim, Su-Min
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권11호
    • /
    • pp.19-27
    • /
    • 2022
  • 본 연구에서는 시계열 데이터 이상 탐지 수행을 위한 MLOps(Machine Learning Operations) 워크플로를 기술하고 관리할 수 있는 언어와 플랫폼을 제안한다. 시계열 데이터는 IoT 센서, 시스템 성능 지표, 사용자 접속량 등 많은 분야에서 수집되고 있다. 또한, 시스템 모니터링 및 이상 탐지 등 많은 응용 분야에 활용 중이다. 시계열 데이터의 예측 및 이상 탐지를 수행하기 위해서는 분석된 모델을 빠르고 유연하게 운영 환경에 적용할 수 있는 MLOps 플랫폼이 필요하다. 이에, 최근 데이터 분석에 많이 활용되고 있는 Python 기반의 AMML(AI/ML Modeling Language)을 개발하여 손쉽게 MLOps 워크플로를 구성하고 실행할 수 있도록 제안한다. 제안하는 AI MLOps 플랫폼은 AMML을 이용하여 다양한 데이터 소스(R-DB, NoSql DB, Log File 등)에서 시계열 데이터를 추출, 전처리 및 예측을 수행할 수 있다. AMML의 적용 가능성을 검증하기 위해, 변압기 오일 온도 예측 딥러닝 모델을 생성하는 워크플로를 AMML로 구성하고 학습이 정상적으로 수행됨을 확인하였다.

Comparative Analysis of Machine Learning Techniques for IoT Anomaly Detection Using the NSL-KDD Dataset

  • Zaryn, Good;Waleed, Farag;Xin-Wen, Wu;Soundararajan, Ezekiel;Maria, Balega;Franklin, May;Alicia, Deak
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.46-52
    • /
    • 2023
  • With billions of IoT (Internet of Things) devices populating various emerging applications across the world, detecting anomalies on these devices has become incredibly important. Advanced Intrusion Detection Systems (IDS) are trained to detect abnormal network traffic, and Machine Learning (ML) algorithms are used to create detection models. In this paper, the NSL-KDD dataset was adopted to comparatively study the performance and efficiency of IoT anomaly detection models. The dataset was developed for various research purposes and is especially useful for anomaly detection. This data was used with typical machine learning algorithms including eXtreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), and Deep Convolutional Neural Networks (DCNN) to identify and classify any anomalies present within the IoT applications. Our research results show that the XGBoost algorithm outperformed both the SVM and DCNN algorithms achieving the highest accuracy. In our research, each algorithm was assessed based on accuracy, precision, recall, and F1 score. Furthermore, we obtained interesting results on the execution time taken for each algorithm when running the anomaly detection. Precisely, the XGBoost algorithm was 425.53% faster when compared to the SVM algorithm and 2,075.49% faster than the DCNN algorithm. According to our experimental testing, XGBoost is the most accurate and efficient method.