Computer security is considered important due to the side effect generated from the expansion of computer network and rapid increase of the use of computers. Intrusion Detection System(IDS) has been an active research area to reduce the risk from intruders. We propose a new IDS model, which consists of several computers with IDS, based on the immune system model and describe the design of the IDS model and the prototype implementation of it for feasibility testing and evaluate the performance of the IDS in the aspect of detection time, detection accuracy, diversity which is feature of immune system, and system overhead. The IDSs are distributed and if any of distributed IDSs detect anomaly system call among system call sequences generated by a privilege process, the anomaly system call can be dynamically shared with other IDSs. This makes the IDSs improve the ability of immunity for new intruders.
Pretrained language models (PLMs) are extensively utilized to enhance the performance of log anomaly detection systems. Their effectiveness lies in their capacity to extract valuable semantic information from logs, thereby strengthening the detection performance. Nonetheless, challenges arise due to discrepancies in the distribution of log messages, hindering the development of robust and generalizable detection systems. This study investigates the structural and distributional variation across various log message datasets, underscoring the crucial role of domain-specific PLMs in overcoming the said challenge and devising robust and generalizable solutions.
열차의 방향을 기존 방향에서 다른 방향으로 이동시키기 위한 변환 장치인 선로 전환기의 고장은 열차의 탈선 등을 유발시킬 수 있다. 따라서 열차운행의 안전 측면에서 해당 장비에 대한 모니터링은 필수 요소이다. 본 논문에서는 선로 전환기의 구동시 발생하는 소리 정보를 기반으로 잡음에도 강인한 선로 전환기의 이상 상황 탐지시스템을 제안한다. 먼저 제안한 시스템은 소리 센서에서 실시간으로 취득하는 소리 신호에 STFT(Short-Time Fourier Transform)를 적용하여 스펙트로그램을 취득한다. 실제 환경에서 발생하는 잡음의 영향에도 강인한 성능을 보장하기 위하여, 해당 스펙트로그램에 대한 전처리 과정을 수행 후 모듈화 한다. 각각의 모듈에서 평균값과 표준편차를 계산 및 조합하여 특징 벡터로 생성한 후 이진 분류에 뛰어난 성능이 확인된 SVM(Support Vector Machine)에 적용하여 이상 상황을 탐지한다. 실제 선로 전환기의 전환 시 발생하는 소리 데이터를 이용하여 모의실험을 수행한 결과, 제안한 시스템은 잡음이 발생하는 상황에서도 효과적으로 이상 상황을 탐지함을 확인하였다.
최근 전력 수요의 급증으로 인한 전력난은 효율적 전력 사용을 위한 스마트그리드 기술의 중요성을 부각시키고 있다. 스마트그리드 네트워크의 필수구성요소인 스마트미터기의 가용성 취약점에 대한 실험적 내용이 보고되고 있다. 따라서 안전한 스마트그리드의 실현가능성을 위한 가용성 보호 메커니즘 고안이 필수불가결하다. 본 논문에서는 스마트그리드 구조 및 트래픽패턴의 특징 분석을 통해 스마트미터기에 대한 가용성 침해 공격을 탐지하고, 이상 트래픽을 발생하는 공격노드를 검출할 수 있는 메커니즘을 제안한다. 제안하는 탐지 메커니즘은 공격 탐지를 수행하는 시스템의 탐지 부하를 줄이고 적은 샘플 수에도 높은 탐지율을 제공하기 위해 근사엔트로피 기법을 사용한다. 또한 공격노드가 공격트래픽에서 변경할 수 없는 물리정보(CIR 또는 RSSI 등)를 이용하여 공격 탐지 및 공격노드 검출을 수행한다. 마지막으로 본 논문 제안 기법에 대한 시뮬레이션 결과, 탐지 성능과 실현가능성을 보인다.
Does snow depth initialization have a quantitative impact on sub-seasonal to seasonal prediction skill? To answer this question, a snow depth initialization technique for seasonal forecast system has been implemented and the impact of the initialization on the seasonal forecast of surface air temperature during the wintertime is examined. Since the snow depth observation can not be directly used in the model simulation due to the large systematic bias and much smaller model variability, an anomaly rescaling method to the snow depth initialization is applied. Snow depth in the model is initialized by adding a rescaled snow depth observation anomaly to the model snow depth climatology. A suite of seasonal forecast is performed for each year in recent 12 years (1999-2010) with and without the snow depth initialization to evaluate the performance of the developed technique. The results show that the seasonal forecast of surface air temperature over East Asian region sensitively depends on the initial snow depth anomaly over the region. However, the sensitivity shows large differences for different timing of the initialization and forecast lead time. Especially, the snow depth anomaly initialized in the late winter (Mar. 1) is the most effective in modulating the surface air temperature anomaly after one month. The real predictability gained by the snow depth initialization is also examined from the comparison with observation. The gain of the real predictability is generally small except for the forecasting experiment in the early winter (Nov. 1), which shows some skillful forecasts. Implications of these results and future directions for further development are discussed.
컴퓨터 네트워크의 확대 및 인터넷 이용의 급격한 증가에 따른 최근의 정보통신 기반구조는 컴퓨터 시스템의 네트워크를 통한 연결로 다양한 서비스를 제공하고 있다. 특히 인터넷은 개방형 구조를 가지고 있어 서비스 품질의 보장과 네트워크의 관리가 어렵고, 기반구조의 취약성으로 인하여 타인으로부터의 해킹 및 정보유출 둥의 위협으로부터 노출되어 있다. 보안 위협에 대한 능동적인 대처 및 침입 이후에 동일한 또는 유사한 유형의 사건 발생에 대해 실시간 대응할 수 있는 방법이 중요하게 되었으며 이러한 해결책으로서 침임 탐지 시스템에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 지도학습 알고리즘이 의한 침입탐지 시스템의 성능을 향상시키기 위해서 불확실성을 해결하기 위한 방법인 퍼지를 적용한 뉴로-퍼지 모델의 이상 침입 탐지 시스템에 대해서 연구한다. 즉, 신경망 학습의 전달함수를 불확실성을 해결하기 위한 퍼지 멤버쉽 함수로 수정하여 지도학습을 수행하였다. 제안한 뉴로-퍼지기법을 DARPA 침입 데이터를 이용하여 오용 탐지의 한계성을 극복한 네트워크기반의 이상침입 탐지에 적용하여 성능을 검증하였다.
데이터 중심적인 네트워크인 무선 센서 네트워크는 대량의 센서 노드들이 광범위한 지역에 조밀하게 분산 배치되어 동작한다. 센서 노드들은 일반적으로 열린 환경에서 독립적으로 동작하기 때문에 보안 공격에 취약하다. 본 논문에서는 무선 센서 네트워크를 위한 콘텐츠 기반 이상 탐지 기법을 제안한다. 제안 기법은 무선 센서 네트워크의 특징인 특정한 현상을 여러 개의 센서 노드가 동시에 감지한다는 특성과 센서 노드에서 측정된 데이터인 콘텐츠는 어떤 특정 범위 안에서 변한다는 특성을 이용한다. 제안 기법은 훈련 단계, 적용 단계와 보정 단계로 구성되며 적용 단계에서 거리 기반 이상 탐지(distance-based anomaly detection) 기법을 이용하여 얻게 된 이상치 후보를 보정 단계로 보낸다. 보정 단계는 동일한 현상을 동시에 감지한 센서 노드들의 데이터로 구성된 콘텐츠 테이블과 이상치 후보를 비교, 분석함으로써 이상 탐지 기법의 성능을 향상시킨다. 시뮬레이션을 통해 제안 탐지 기법이 높은 탐지율과 낮은 오탐율을 가진다는 것을 확인할 수 있었다.
Purpose: The purpose of this study is to compare machine learning models for anomaly detection of mechanical facility equipment and suggest an anomaly detection system for mechanical facility equipment in subway stations. It helps to predict failures and plan the maintenance of facility. Ultimately it aims to improve the quality of facility equipment. Methods: The data collected from Daejeon Metropolitan Rapid Transit Corporation was used in this experiment. The experiment was performed using Python, Scikit-learn, tensorflow 2.0 for preprocessing and machine learning. Also it was conducted in two failure states of the equipment. We compared and analyzed five unsupervised machine learning models focused on model Long Short-Term Memory Variational Autoencoder(LSTM-VAE). Results: In both experiments, change in vibration and current data was observed when there is a defect. When the rotating body failure was happened, the magnitude of vibration has increased but current has decreased. In situation of axis alignment failure, both of vibration and current have increased. In addition, model LSTM-VAE showed superior accuracy than the other four base-line models. Conclusion: According to the results, model LSTM-VAE showed outstanding performance with more than 97% of accuracy in the experiments. Thus, the quality of mechanical facility equipment will be improved if the proposed anomaly detection system is established with this model used.
본 연구에서는 시계열 데이터 이상 탐지 수행을 위한 MLOps(Machine Learning Operations) 워크플로를 기술하고 관리할 수 있는 언어와 플랫폼을 제안한다. 시계열 데이터는 IoT 센서, 시스템 성능 지표, 사용자 접속량 등 많은 분야에서 수집되고 있다. 또한, 시스템 모니터링 및 이상 탐지 등 많은 응용 분야에 활용 중이다. 시계열 데이터의 예측 및 이상 탐지를 수행하기 위해서는 분석된 모델을 빠르고 유연하게 운영 환경에 적용할 수 있는 MLOps 플랫폼이 필요하다. 이에, 최근 데이터 분석에 많이 활용되고 있는 Python 기반의 AMML(AI/ML Modeling Language)을 개발하여 손쉽게 MLOps 워크플로를 구성하고 실행할 수 있도록 제안한다. 제안하는 AI MLOps 플랫폼은 AMML을 이용하여 다양한 데이터 소스(R-DB, NoSql DB, Log File 등)에서 시계열 데이터를 추출, 전처리 및 예측을 수행할 수 있다. AMML의 적용 가능성을 검증하기 위해, 변압기 오일 온도 예측 딥러닝 모델을 생성하는 워크플로를 AMML로 구성하고 학습이 정상적으로 수행됨을 확인하였다.
International Journal of Computer Science & Network Security
/
제23권1호
/
pp.46-52
/
2023
With billions of IoT (Internet of Things) devices populating various emerging applications across the world, detecting anomalies on these devices has become incredibly important. Advanced Intrusion Detection Systems (IDS) are trained to detect abnormal network traffic, and Machine Learning (ML) algorithms are used to create detection models. In this paper, the NSL-KDD dataset was adopted to comparatively study the performance and efficiency of IoT anomaly detection models. The dataset was developed for various research purposes and is especially useful for anomaly detection. This data was used with typical machine learning algorithms including eXtreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), and Deep Convolutional Neural Networks (DCNN) to identify and classify any anomalies present within the IoT applications. Our research results show that the XGBoost algorithm outperformed both the SVM and DCNN algorithms achieving the highest accuracy. In our research, each algorithm was assessed based on accuracy, precision, recall, and F1 score. Furthermore, we obtained interesting results on the execution time taken for each algorithm when running the anomaly detection. Precisely, the XGBoost algorithm was 425.53% faster when compared to the SVM algorithm and 2,075.49% faster than the DCNN algorithm. According to our experimental testing, XGBoost is the most accurate and efficient method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.