• Title/Summary/Keyword: perforation parameters

Search Result 47, Processing Time 0.025 seconds

Numerical study on concrete penetration/perforation under high velocity impact by ogive-nose steel projectile

  • Islam, Md. Jahidul;Liu, Zishun;Swaddiwudhipong, Somsak
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.111-123
    • /
    • 2011
  • Severe element distortion problem is observed in finite element mesh while performing numerical simulations of high velocity steel projectiles penetration/perforation of concrete targets using finite element method (FEM). This problem of element distortion in Lagrangian formulation of FEM can be resolved by using element erosion methodology. Element erosion approach is applied in the finite element program by defining failure parameters as a condition for element elimination. In this study strain parameters for both compression and tension at failure are used as failure criteria. Since no direct method exists to determine these values, a calibration approach is used to establish suitable failure strain values while performing numerical simulations of ogive-nose steel projectile penetration/perforation into concrete target. A range of erosion parameters is suggested and adopted in concrete penetration/perforation tests to validate the suggested values. Good agreement between the numerical and field data is observed.

Vibrations and stress analysis of perforated functionally graded rotating beams

  • Alaa A. Abdelrahman;Hanaa E. Abd-El-Mottaleb;Mohamed G. Elblassy;Eman A. Elshamy
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.667-684
    • /
    • 2023
  • In the context of finite element method, a computational simulation is presented to study and analyze the dynamic behavior of regularly perforated functionally graded rotating beam for the first time. To investigate the effect of perforation configurations, both regular circular and squared perforation patterns are studied. To explore impacts of graded material distributions, both axial and transverse gradation profiles are considered. The material characteristics of graded materials are assumed to be smoothly and continuously varied through the axial or the thickness direction according the nonlinear power gradation law. A computational finite elements procedure is presented. The accuracy of the numerical procedure is verified and compared. Resonant frequencies, axial displacements as well as internal stress distributions throughout the perforated graded rotating cantilever beam are studied. Effects of material distributions, perforation patterns, as well as the rotating beam speed are investigated. Obtained results proved that the graded material distribution has remarkable effects on the dynamic performance. Additionally, circular perforation pattern produces more softening effect compared with squared perforation configuration thus larger values of axial displacements and maximum principal stresses are detected. Moreover, squared perforation provides smaller values of nondimensional frequency parameters at most of vibration modes compared with circular pattern.

Perforation optimization of hydraulic fracturing of oil and gas well

  • Zhu, Hai Yan;Deng, Jin Gen;Chen, Zi Jian;An, Feng Chen;Liu, Shu Jie;Peng, Cheng Yong;Wen, Min;Dong, Guang
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.463-483
    • /
    • 2013
  • Considering the influences of fluid penetration, casing, excavation processes of wellbore and perforation tunnels, the seepage-deformation finite element model of oil and gas well coupled with perforating technique is established using the tensile strength failure criterion, in which the user-defined subroutine is developed to investigate the dynamic evolvement of the reservoir porosity and permeability. The results show that the increases of perforation angle and decreases of perforation density lead to a higher fracture initiation pressure, while the changes of the perforation diameter and length have no evident influences on the fracture initiation pressure. As for initiation location for the fracture in wellbore, it is on the wellbore face while considering the presence of the casing. By contrast, the fractures firstly initiate on the root of the tunnels without considering casing. Besides, the initial fracture position is also related with the perforation angle. The fracture initiation position is located in the point far away from the wellbore face, when the perforation angle is around $30^{\circ}$; however, when the perforation angle is increased to $45^{\circ}$, a plane fracture is initiated from the wellbore face in the maximum horizontal stress direction; no fractures was found around perforation tunnels, when the angel is close to $90^{\circ}$. The results have been successfully applied in an oilfield, with the error of only 1.1% comparing the fracture initiation pressure simulated with the one from on-site experiment.

Radiographic analysis of odontogenic cysts showing displacement of the mandibular canal

  • Cho Bong-Hae
    • Imaging Science in Dentistry
    • /
    • v.33 no.4
    • /
    • pp.211-215
    • /
    • 2003
  • Purpose: To assess the radiographic findings of odontogenic cysts showing displacement of the mandibular canal using computed tomographic (CT) and panoramic images. Materials and Methods : CT and panoramic images of 63 odontogenic cysts (27 dentigerous, 16 odontogenic keratocysts, and 20 radicular cysts) were analyzed to evaluate the following parameters: the dimension and shape of the cysts, and the effect of the cysts on the mandibular canal and cortical plates. Results: Of the 63 cysts examined in the study, 35 (55.6%) showed inferior displacement of the mandibular canal and 46 (73.0%) showed perforation of the canal. There were statistically significant differences between CT and panoramic images in depicting displacement and perforation of the mandibular canal. Cortical expansion was seen in 46 cases (73.0%) and cortical perforation in 23 cases (36.5%). The radicular cysts showed cortical expansion and perforation less frequently than the other cyst groups. Conclusion: Large cysts of mandible should be evaluated by multiplanar CT images inorder to detect the mandibular canal and cortical bone involvement.

  • PDF

A study on Effects of Parameters in the Lagrangian Code based on F.E.M. through Oblique Dual-Plates Perforation Phenomena (관통자에 의한 경사복판의 관통현상에서 유한요소법을 근간으로한 라그랑지 코드의 변수의 영향에 관한 연구)

  • Kim, Ha-youn
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.55-60
    • /
    • 2004
  • This study is concerned to the perforation phenomena of the oblique dual-plate by projectile. Experiment and simulation related to that was carried out. the variables considered in this phenomena include the electrolytic zinc coated steel sheet and carbon steel rod. In the former, the confirmation and projectile velocity possible phenomena of real phenomena is done, the latter, the effect of parameter such as time-step and grid space length is analized by using the three-dimensional Lagrangian explicit time-integration finite element code, HEMP. this code use the eight node hexahedral elements and in this study, Von-Mises Criteria is used as the strength model, Mie-Gruneisen is as the Equation of State. the simulation was performed by contrast with the experiment. through the calibration of the parameter of lagrangian code, reasonable result was approached.

  • PDF

Perforated Choledochal Cyst: Its Clinical Implications in Pediatric Patient

  • Kim, Soo-Hong;Cho, Yong-Hoon;Kim, Hae-Young
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.23 no.3
    • /
    • pp.259-265
    • /
    • 2020
  • Purpose: Perforation of choledochal cyst (CC) is a relatively rare clinical presentation in pediatric populations and difficult to predict preoperatively. We assess the clinical implications by comparing clinical parameters based on a single-center experience between perforated and nonperforated CC to facilitate the appropriate management for future interventions. Methods: A total of 92 cases of CC in pediatric patients (aged <18 years) who received surgical management between January 2003 and December 2018 at a Pusan National University Children's Hospital were reviewed. After screening the clinical features of perforated cases, we compared the demographic findings, clinical characteristics, and some laboratory results between the perforated and nonperforated groups. Results: Perforated CC was identified in 8 patients (8.7%), and nonperforated CC in 84 patients (91.3%). Perforation can be classified into three categories: free perforation of cyst (3 cases), pinpoint perforation of cyst (2 cases), and necrotic change of cyst (3 cases). CC perforation occurred significantly more commonly in patients aged <24 months. Clinically, the perforated group showed significantly higher frequency of fever and higher C-reactive protein (CRP) level during the initial visit. Conclusion: Perforation is more likely to be suspected in patients aged <24 months presenting together with fever and high CRP level in the initial visit. It is also necessary to keep in mind that it indicates not only a possibility of complicated disease status regardless of its association with stones but also a difficulty of applying a minimal invasive procedure and relatively increased length of hospital stay.

Optimal response of conical tool semi angle in ductile metal sheets indentation and its governing mechanics

  • Nazeer, Malik M.;Khan, M. Afzal;Haq, A-Ul
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.47-62
    • /
    • 2003
  • The nonlinear dependence aspect of various conical tool indentation parameters leading to an optimum tool semi angle value for easiest perforation is plotted and discussed explicitly in this work with the conclusion that tool angle has an optimum response towards most of the indentation parameters. Around this optimum angle, the aluminium sheets showed minimum fracture toughness as well as minimum work input to overcome the offered resistance. At the end, the mechanism leading to this phenomenon is presented with the conclusion that plastic flow dominates as the dimple semi cone angle reaches 35 and both pre and post plastic flow perforations lead the tool semi cone angle value towards this dimple cone semi angle of plastic flow initiation for its optimum performance. It is also concluded that specimen material failure is solely under tensile hoop stress and hence results into radial cracks initiation and propagation.

Vibration of nonlocal perforated nanobeams with general boundary conditions

  • Eltaher, Mohamed A.;Mohamed, Norhan A.
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.501-514
    • /
    • 2020
  • This article presents a comprehensive model to investigate a free vibration and resonance frequencies of nanostructure perforated beam element as nano-resonator. Nano-scale size dependency of regular square perforated beam is considered by using nonlocal differential form of Eringen constitutive equation. Equivalent mass, inertia, bending and shear rigidities of perforated beam structure are developed. Kinematic displacement assumptions of both Timoshenko and Euler-Bernoulli are assumed to consider thick and thin beams, respectively. So, this model considers the effect of shear on natural frequencies of perforated nanobeams. Equations of motion for local and nonlocal elastic beam are derived. After that, analytical solutions of frequency equations are deduced as function of nonlocal and perforation parameters. The proposed model is validated and verified with previous works. Parametric studies are performed to illustrate the influence of a long-range atomic interaction, hole perforation size, number of rows of holes and boundary conditions on fundamental frequencies of perforated nanobeams. The proposed model is supportive in designing and production of nanobeam resonator used in nanoelectromechanical systems NEMS.

A finite element-experimental study of the impact of spheres on aluminium thin plates

  • Micheli, Giancarlo B.;Driemeier, Larissa;Alves, Marcilio
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.263-280
    • /
    • 2015
  • This paper describes a study of the collision of hard steel spheres against aluminium thin circular plates at speeds up to 140 m/s. The tests were monitored by a high speed camera and a chronoscope, which allowed the determination of the ballistic limit and the plate deformation pattern. Quasi-static material parameters were obtained from tests on a universal testing machine and dynamic mechanical characterization of two aluminium alloys were conducted in a split Hopkinson pressure bar. Using a damage model, the perforation of the plates was simulated by finite element analysis. Axisymmetric, shell and solid elements were employed with various parameters of the numerical analysis being thoroughly discussed, in special, the dynamic model parameters. A good agreement between experiments and the numerical analysis was obtained.

Stability Analysis of Web Plates with Openings (개구부를 갖는 Web판의 안정해석)

  • 이수곤;김순철;김명수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.135-140
    • /
    • 1998
  • The buckling of the perforated web of a simply supported Η-section beam subjected to uniformly distributed load is examined by means of the finite element method. With buckling analysis results, the effect of this hole on the load carrying capacity of the beam with dimensions L/h = 11 and 13 ( L = span length h = web depth) is investigated. The parameters whose variation have been considered are hole size and location. It can be generally concluded that the buckling of the perforated web of an H-section beam is not affected seriously by the location of the perforation.

  • PDF