• Title/Summary/Keyword: perforated wall

Search Result 100, Processing Time 0.031 seconds

Environmental Survey to a Ventilation System on the Enclosed Farrowing-nursery Pig House in Winter (무창 분만ㆍ자돈사내에서 환기시스템별 혹한기 환경 조사)

  • 유용희;송준익;정종원;김태일;최희철;양창범;이영윤
    • Journal of Animal Environmental Science
    • /
    • v.10 no.1
    • /
    • pp.23-28
    • /
    • 2004
  • This study was conducted to improve a ventilation system on the enclosed farrowing-nursery pig house in Korean swine facilities. This survey ventilation system types four major structures. The first structure has planer slot inlet, where air comes in, and these are placed outside the wall under the eave. Then the air from the pig house flows out through the chimney outlet operated by an exhaust fan(V1). The second structure has an air input through the perforated ceiling inlet, then the air from the pig house flows out through the chimney outlet operated by an exhaust fan(V2). Through the circular duct inlet placed inside the juncture of the entry wall, air also comes in(third structure). Then, air from the pig house flows out through the chimney outlet operated by an exhaust fan(V3), Similarly, air comes in through the circular duct inlet placed inside the juncture of the entry wall, but air from the pig house flows out through the side wall by an exhaust fan(V4). Temperature, relative humidity, air velocity and ammonia concentration(NH$_3$) were measured in the interior farrowing-nursery pig house during winter. The results were as follows; Interior temperature at the pig house was not remarkably different in all ventilation systems. The V4 system had low area air velocity, and this was better than other systems. It also had a lower ammonia concentration than other systems. V3 and V4 systems had stable airflow patterns, better than other systems. Therefore, it is suggested that the V3 and V4 ventilation system be applied in the enclosed farrowing-nursery pig house in winter.

  • PDF

Effects of Various Baffles on Hydraulic Characteristics in the Sedimentation Basin with Inclined Plate Settler (경사판 침전지의 수리학적 특성에 대한 구조물의 영향)

  • Yu, Myong-Jin;Kim, Hyun-Chul;Myung, Gyu-Nam;Ryu, Seong-Ho;Cho, Hang-Moon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.427-436
    • /
    • 2004
  • Sedimentation is one of the most common and important units in conventional water treatment plants. Structure such as various baffle walls and inclined plate settler may be obstacles to the horizontal flow when it is poorly designed. Therefore, the effects of these structures on characteristics of hydraulic flow must be evaluated to improve the settling efficiency of the floc. The hydraulic characteristic of the four sedimentations at the three real WTPs (water treatment plants), which have different structural properties respectively inside the settling basin, were investigated by tracer (fluoride) test. The inclined plate settler installed inside settling basin caused a undesirable impact on horizontal flow and produced dead zone. Intermediate baffle and solid baffle wall under the inclined plate settler at GE plant help to minimize the formation of density currents and flow short circuiting. However, installing perforated baffle under the inclined plate settler at other plants could not induce even distribution of flow. NaF used as a tracer was recovered more than 90% at investigated all basin. Morill index ($t_{90}/t_{10}$), Modal index ($t_p/T-HRT$) and short-circuiting index ($[M-HRT-t_p/M-HRT$) were determined from tracer test results performed at three WTPs. Those indices ranged 2.99~3.45, 0.44~0.72 and 0.23~0.47, respectively.

Reflection Characteristics of Vortical Slit Caisson Breakwater (종 SLIT형 케이슨 방파제의 반사특성)

  • 이종인;조지훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.4
    • /
    • pp.263-272
    • /
    • 2001
  • Recently, some attempts to construct slit caisson-type breakwaters are made in Korea. Since slit caisson-type breakwaters are suitable for relatively deep sea areas, a lot of theoretical and experimental researches have been performed. In this study, the reflection characteristics of vertical slit caisson breakwaters are investigated based on the measured data in two-dimensional hydraulic model tests with irregular waves. The experiments were conducted for various cases; variation of porosity of perforated-wall, width of wave chamber, number of slits for single-and double-chamber, respectively. It is found that in the case when the wave steepness (H/L$_{s}$ ) is small, the reflection coefficients are large. The existing researches have shown that the wave reflection is minimized when the nondimensional width of wave chamber B/L is about 0.2~0.25 for the regular waves. However, for the irregular waves the reflection is lowest when $B/L_2$, is 0.13~0.15. For a same porosity condition, the wave dissipation is stronger as the width of s1it is larger. The double-chamber caisson is superior to single- chamber caisson in the wave dissipating effects.

  • PDF

Management of Empyema Caused by a Gastropleural Fistula - A case report - (위늑막루에 의한 농흉의 치험 - 1예 보고 -)

  • Lee, Seong-Kwang;Lee, Yang-Haeng;Jeon, Hee-Jae;Yoon, Young-Chul;Hwang, Youn-Ho;Park, Kyung-Taek;Choi, Chang-Soo
    • Journal of Chest Surgery
    • /
    • v.43 no.3
    • /
    • pp.340-343
    • /
    • 2010
  • Gastropleural fistula is a rare complication of prior lung surgery, gastric ulcer, trauma and malignancy. A 62 year old female patient who had received surgical repair of a perforated gastric wall 10 years prior, underwent open pleural decortication. At 4 days after surgery, food residuums were noticed at the chest bottles. Hence, an emergency esophagogram was done. The esophagogram revealed a gastropleural fistula. The patient received a total gastrectomy, intra-abdominal diaphragmatic repair and massive thoracic saline irrigation through a previous thoracic wound. The patient was discharged 11 days after surgery without other morbidity.

Heat/Mass Transfer Characteristics in Impingement/Effusion Cooling System with Rectangular Fins for Combustor Liner Cooling (가스터빈 연소실 냉각을 위한 충돌제트/유출냉각기법에서 사각핀 설치에 따른 열/물질전달 특성)

  • Hong, Sung Kook;Rhee, Dong-Ho;Cho, Hyung Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.4 s.31
    • /
    • pp.39-47
    • /
    • 2005
  • The present study has been performed to investigate the influences of rectangular fins on heat transfer in an impingement/effusion cooling system with crossflow. To simulate the impingement/effusion cooling system with initial crossflow, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter. The crossflow passes between the plates, and various rectangular fins are installed on the plates. Reynolds number based on the hole diameter is fixed to 10,000 and the flow rate of crossflow is changed from 0.5 to 1.5 times of that of the impinging jet. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. Also to analyze the flow characteristics, a numerical calculation is performed. When rectangular fins are installed, the flow and heat transfer pattern is changed greatly from the case without fins. In the injection hole region, the jet impinges on effusion plate without deflection and wall jet spreads symmetrically. In the effusion region, the crossflow accelerates due to the decrease of cross-sectional area in the channel. Local heat/mass transfer coefficients are enhanced significantly compared to the case without fins. As the blowing ratio increases, the effect of rectangular fins against the crossflow becomes more significant and then the higher average heat/mass transfer coefficients are obtained than the case without fins. However, the increase of blockage effect gives more pressure loss in the channel.

Heat/Mass Transfer Characteristics in Impingement/Effusion Cooling System with Rectangular Fins for Combustor Liner Cooling (가스터빈 연소실 냉각을 위한 충돌제트/유출냉각기법에서 사각핀 설치에 따른 열/물질전달 특성)

  • Hong, Sung Kook;Rhee, Dong-Ho;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.289-296
    • /
    • 2004
  • The present study has been performed to investigate the influences of rectangular fins on heat transfer in an impingement/effusion cooling system with crossflow. To simulate the impingement/effusion cooling system with initial crossflow, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter. The crossflow passes between the plates, and various rectangular fins are installed on the plates. Reynolds number based on the hole diameter is fixed to 10,000 and the flow rate of crossflow is changed from 0.5 to 1.5 times of that of the impinging jet. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. Also to analyze the flow characteristics, a numerical calculation is performed. When rectangular fins are installed, the flow and heat transfer pattern is changed greatly from case without fins. In the injection hole region, the jet impinges on effusion plate without deflection and wall jet spreads symmetrically. In the effusion region, the crossflow accelerates due to the decrease of cross-sectional area in the channel. Local heat/mass transfer coefficients are enhanced significantly compared to case without fins. As the blowing ratio increases, the effect of fins against the crossflow becomes more significant and then the higher average heat/mass transfer coefficients are obtained than the case without fins.

  • PDF

Shape anisotropy and magnetic properties of Co/Ni anti-dot arrays

  • Deshpande, N.G.;Seo, M.S.;Kim, J.M.;Lee, S.J.;Lee, Y.P.;Rhee, J.Y.;Kim, K.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.444-444
    • /
    • 2011
  • Recently, patterned magnetic films and elements attract a wide interest due to their technological potentials in ultrahigh-density magnetic recording and spintronic devices. Among those patterned magnetic structures, magnetic anti-dot patterning induces a strong shape anisotropy in the film, which can control the magnetic properties such as coercivity, permeability, magnetization reversal process, and magneto-resistance. While majority of the previous works have been concentrated on anti-dot arrays with a single magnetic layer, there has been little work on multilayered anti-dot arrays. In this work, we report on study of the magnetic properties of bilayered anti-dot system consisting of upper perforated Co layer of 40 nm and lower continuous Ni layer of 5 nm thick, fabricated by photolithography and wet-etching processes. The magnetic hysteresis (M-H) loops were measured with a superconducting-quantum-interference-device (SQUID) magnetometer (Quantum Design: MPMS). For comparison, investigations on continuous Co thin film and single-layer Co anti-dot arrays were also performed. The magnetic-domain configuration has been measured by using a magnetic force microscope (PSIA: XE-100) equipped with magnetic tips (Nanosensors). An external electromagnet was employed while obtaining the MFM images. The MFM images revealed well-defined periodic domain networks which arise owing to the anisotropies such as magnetic uniaxial anisotropy, configurational anisotropy, etc. The inclusion of holes in a uniform magnetic film and the insertion of a uniform thin Ni layer, drastically affected the coercivity as compared with single Co anti-dot array, without severely affecting the saturation magnetization ($M_s$). The observed changes in the magnetic properties are closely related to the patterning that hinders the domain-wall motion as well as to the magneto-anisotropic bilayer structure.

  • PDF

Surgical Treatment of Obstructive Lobar Emphysema. A Report of Four Cases. (폐쇄성 엽성 폐기종의 외과적치료 - 4례 보고 -)

  • 김근호
    • Journal of Chest Surgery
    • /
    • v.8 no.2
    • /
    • pp.109-118
    • /
    • 1975
  • This is a report on four cases of the lobar emphysema due to proximal bronchial obstruction in the Department of Thoracic Surgery, Hanyang University Hospital, during the period of three and half years from 1972 to 1975. First case, a two years old male child was referred to our Department with the lobar emphysema of the lower lobe of the right lung with pneumonia. This emphysema was developed after aspiration of a piece of peanut. Bronchoscopy revealed that the bronchus of the right lower lobe was obstructed with the foreign body, however removal of the peanut through bronchoscope was not attempted because of corruption and softening of the peanut. The removal of the peanut by bronchotomy was performed after subsiding of acute phase of pulmonary infection. Postoperative course was uneventful and the emphysema was disappeared. Second case, a twenty months old female baby was referred to our Department with lobar emphysema of the lower lobe of the left lung. The emphysema was suddenly developed with coughing and dyspneic symptoms and the diagnosis was made roentgenologically. She gave a history of reccurrent infections of the respiratory tract after birth. Bronchoscopy showed an obstruction of the left main bronchus with the growing of fibrinous tissue on the bronchial mucosa. The protruded tissue in the left main bronchus taken out about O.8ml with biopsy forceps for histological examination. After this procedure, the emphysema of the left lung was disappeared. Histological finding was reported to be a chronic inflammatory granulation tissue. Third case, a two and half years old male child was referred to our Department with roentgenological lobar emphysema. Two weeks prior to admission he had an episode of sudden onset of coughing attack with dyspnea. Bronchoscopy revealed that the bronchus of the left lower lobe was obstructed with a mass which was strongly suspected of a neoplastic tissue. At operation, there was found a perforation of enlarged tuberculous lymph node in the bronchus of the left lower lobe and protrusion of granulation tissue into the bronchus. Ruptured orifice on themembranous wall of the left lower lobe bronchus was closed with interrupted suture after the" removal of a perforated tuberculous lymph node. Postoperative course was uneventful and antituberculous chemotherapy was given. Fourth case, a 47 years old man was admitted to our Department with the complaint of severe dyspnea of few months duration. Twenty years ago, he had a history of lung tuberculosis and was treated for many years. X-ray examination including tomography and bronchography revealed that the upper lobe of the right lung was destroyed with cavities, the lower lobe was completely shrunk, and the right middle lobe was strongly overdistended with narrowing bronchial trees. Differential bronchospirometry and lung scanning confirmed that the respiratory function of the affected lung was impaired almost totally. The value of the right lung was calculated on 6% of oxygen uptake, 1% of Minute volume, and 32% of vital capacity. The right pneumonectomy was performed under the careful consideration of anesthetic and surgical procedures. Postoperative course was uneventful and the respiratory function was improved nearly to the normal level.evel.

  • PDF

Two and Three Dimensional Analysis about the Reflection Coefficient by the Slit Caisson and Resulting Wave Pressure Acting on the Structure (슬리트케이슨제에 의한 반사율과 구조물에 작용하는 파압에 관한 2차원 및 3차원해석)

  • Lee, Kwang-Ho;Choi, Hyun-Seok;Baek, Dong-Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.374-386
    • /
    • 2010
  • Recently, the theoretical and experimental research is being made actively in control character of waves of perforated-wall caisson breakwater like the slit caisson. This study showed that the character of reflection coefficient and the wave pressure acting on the front and inner of slit caisson were estimated in two and three dimensional numerical wave flume and compared each other. The numerical experiment was set and conducted by various cases as to a variety of wave steepness under 7 sec, 9 sec, 11sec and 13 sec period condition. In this study using a 2 and 3 dimensional numerical wave flume, it applied the Model for the immiscible two-phase flow based on the Naveir-Stokes Equations. This technique can easily reproduce a complicated physical phenomenon more than others and organize the program simply. According to the results of the experiment, the reflection coefficient was estimated high in short-period waves. However, 2-dimensional numerical experiment and 3-dimensional numerical experiment were the same in case of the long-period waves and high wave steepness. And to conclude in case of short-period waves the pressures were a relatively small difference between the two, but there was a big gap in longperiod waves and high wave steepness.

Intrapulpal Temperature Change during Cavity Preparation on the Enamel and Dentin with an Er:YAG Laser (Er:YAG 레이저를 이용한 법랑질 및 상아질 와동 형성시의 치수내 온도변화)

  • Yang, Hee-Young;Kim, Mee-Eun;Kim, Ki-Suk
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.4
    • /
    • pp.457-464
    • /
    • 2005
  • The purpose of our study was to investigate whether the intrapulpal temperature during cavity preparation of enamel or dentin with Er:YAG laser still remained in range of safety for dental pulp protection when combined with appropriate water flow rate. The effect of different pulse repetition rates at the same pulse energy during ablation was evaluated as well. Caries-free, restoration-free extracted human molar teeth were prepared for the specimen and divided two experimental groups of enamel and dentin. Each group comprised 5 specimens and each of tooth specimens were embedded into a resin block each and measuring probe was placed on the irradiated pulpal walls. For experiments of dentin ablation, enamel layers were prepared to produce dentin specimen with a same dentin thickness of 2 mm. A pulse energy of Er:YAG laser was set to 300 mJ and three different pulse repetition rates of 20 Hz, 15 Hz and 10 Hz were employed. Laser beam was delivered with 3 seconds and less per application over enamel and dentin surfaces constant sized by $3\;mm{\times}2\;mm$ and water spray added during irradiation was a rate of 1.6 ml/min. Temperature change induced by Er:YAG laser irradiation was monitored and recorded While enamel was ablated, there was no significant difference of temperature related to pulse repetition rates(p=0.358) and temperature change at any pulse repetition rate was negligible. Significant statistical difference in temperature changes during cavity preparation in dentin existed among three different pulse groups(p=0.001). While temperature rise was noticeable when the dentinal wall was perforated, actual change of temperature due to Er:YAG laser irradiation was not enough to compromise safety of dental pulp when irradiation was conjugated with appropriate water spray. Conclusively, it can be said that cavity preparation on enamel or dentin with an Er:YAG laser is performed safely without pulp damage if appropriate volume of water is sprayed properly over the irradiated site.