• 제목/요약/키워드: perceptron learning algorithm

검색결과 143건 처리시간 0.017초

A Novel Feature Selection Approach to Classify Breast Cancer Drug using Optimized Grey Wolf Algorithm

  • Shobana, G.;Priya, N.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.258-270
    • /
    • 2022
  • Cancer has become a common disease for the past two decades throughout the globe and there is significant increase of cancer among women. Breast cancer and ovarian cancers are more prevalent among women. Majority of the patients approach the physicians only during their final stage of the disease. Early diagnosis of cancer remains a great challenge for the researchers. Although several drugs are being synthesized very often, their multi-benefits are less investigated. With millions of drugs synthesized and their data are accessible through open repositories. Drug repurposing can be done using machine learning techniques. We propose a feature selection technique in this paper, which is novel that generates multiple populations for the grey wolf algorithm and classifies breast cancer drugs efficiently. Leukemia drug dataset is also investigated and Multilayer perceptron achieved 96% prediction accuracy. Three supervised machine learning algorithms namely Random Forest classifier, Multilayer Perceptron and Support Vector Machine models were applied and Multilayer perceptron had higher accuracy rate of 97.7% for breast cancer drug classification.

Development of a Multi-criteria Pedestrian Pathfinding Algorithm by Perceptron Learning

  • Yu, Kyeonah;Lee, Chojung;Cho, Inyoung
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권12호
    • /
    • pp.49-54
    • /
    • 2017
  • Pathfinding for pedestrians provided by various navigation programs is based on a shortest path search algorithm. There is no big difference in their guide results, which makes the path quality more important. Multiple criteria should be included in the search cost to calculate the path quality, which is called a multi-criteria pathfinding. In this paper we propose a user adaptive pathfinding algorithm in which the cost function for a multi-criteria pathfinding is defined as a weighted sum of multiple criteria and the weights are learned automatically by Perceptron learning. Weight learning is implemented in two ways: short-term weight learning that reflects weight changes in real time as the user moves and long-term weight learning that updates the weights by the average value of the entire path after completing the movement. We use the weight update method with momentum for long-term weight learning, so that learning speed is improved and the learned weight can be stabilized. The proposed method is implemented as an app and is applied to various movement situations. The results show that customized pathfinding based on user preference can be obtained.

영상 인식을 위한 생리학적 퍼지 단층 학습 알고리즘 (Physiological Fuzzy Single Layer Learning Algorithm for Image Recognition)

  • 김영주
    • 한국지능시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.406-412
    • /
    • 2001
  • 본 논문은 기존의 퍼지 단층 퍼셉트론 알고리즘의 학습 시간과 수렴성을 개선하기 위해 인간 신경계의 생리학적 뉴런 구조를 분석하며 퍼지 논리를 이용한 새로운 뉴런 구조를 제시하고, 이를 바탕으로 생리학적 퍼지 단층 퍼셉트론(P-FLSP: Physiological Fuzzy Single Layer Perceptron)에 대한 학습 모형과 학습 알고리즘을 제안한다. 제안된 학습 알고리즘의 성능을 평가하기 위해 Exclusive OR 문제, 3-bit parity 문제 그리고 차량 번호판 인식 문제 등에 적용하여 피곤의 피지 단층 퍼셉트론 알고리즘과 성능을 비교, 분석하였다. 실험 결과에서는 제안된 학습 알고리즘(P-FSLP)이 기존의 퍼지 단층 학습 알고리즘보다 지역 최소화에 빠질 가능성이 감소하였으며 학습 시간과 수렴성도 개선되었을 뿐만 아니라, 영상 인식등에 대한 응용 가능성도 제시되었다.

  • PDF

NETLA Based Optimal Synthesis Method of Binary Neural Network for Pattern Recognition

  • Lee, Joon-Tark
    • 한국지능시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.216-221
    • /
    • 2004
  • This paper describes an optimal synthesis method of binary neural network for pattern recognition. Our objective is to minimize the number of connections and the number of neurons in hidden layer by using a Newly Expanded and Truncated Learning Algorithm (NETLA) for the multilayered neural networks. The synthesis method in NETLA uses the Expanded Sum of Product (ESP) of the boolean expressions and is based on the multilayer perceptron. It has an ability to optimize a given binary neural network in the binary space without any iterative learning as the conventional Error Back Propagation (EBP) algorithm. Furthermore, NETLA can reduce the number of the required neurons in hidden layer and the number of connections. Therefore, this learning algorithm can speed up training for the pattern recognition problems. The superiority of NETLA to other learning algorithms is demonstrated by an practical application to the approximation problem of a circular region.

오류 역전파 학습에서 확률적 가중치 교란에 의한 전역적 최적해의 탐색 (Searching a global optimum by stochastic perturbation in error back-propagation algorithm)

  • 김삼근;민창우;김명원
    • 전자공학회논문지C
    • /
    • 제35C권3호
    • /
    • pp.79-89
    • /
    • 1998
  • The Error Back-Propagation(EBP) algorithm is widely applied to train a multi-layer perceptron, which is a neural network model frequently used to solve complex problems such as pattern recognition, adaptive control, and global optimization. However, the EBP is basically a gradient descent method, which may get stuck in a local minimum, leading to failure in finding the globally optimal solution. Moreover, a multi-layer perceptron suffers from locking a systematic determination of the network structure appropriate for a given problem. It is usually the case to determine the number of hidden nodes by trial and error. In this paper, we propose a new algorithm to efficiently train a multi-layer perceptron. OUr algorithm uses stochastic perturbation in the weight space to effectively escape from local minima in multi-layer perceptron learning. Stochastic perturbation probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the EGP learning gets stuck to it. Addition of new hidden nodes also can be viewed asa special case of stochastic perturbation. Using stochastic perturbation we can solve the local minima problem and the network structure design in a unified way. The results of our experiments with several benchmark test problems including theparity problem, the two-spirals problem, andthe credit-screening data show that our algorithm is very efficient.

  • PDF

Self-Relaxation for Multilayer Perceptron

  • Liou, Cheng-Yuan;Chen, Hwann-Txong
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.113-117
    • /
    • 1998
  • We propose a way to show the inherent learning complexity for the multilayer perceptron. We display the solution space and the error surfaces on the input space of a single neuron with two inputs. The evolution of its weights will follow one of the two error surfaces. We observe that when we use the back-propagation(BP) learning algorithm (1), the wight cam not jump to the lower error surface due to the implicit continuity constraint on the changes of weight. The self-relaxation approach is to explicity find out the best combination of all neurons' two error surfaces. The time complexity of training a multilayer perceptron by self-relaxationis exponential to the number of neurons.

  • PDF

A Biological Fuzzy Multilayer Perceptron Algorithm

  • Kim, Kwang-Baek;Seo, Chang-Jin;Yang, Hwang-Kyu
    • Journal of information and communication convergence engineering
    • /
    • 제1권3호
    • /
    • pp.104-108
    • /
    • 2003
  • A biologically inspired fuzzy multilayer perceptron is proposed in this paper. The proposed algorithm is established under consideration of biological neuronal structure as well as fuzzy logic operation. We applied this suggested learning algorithm to benchmark problem in neural network such as exclusive OR and 3-bit parity, and to digit image recognition problems. For the comparison between the existing and proposed neural networks, the convergence speed is measured. The result of our simulation indicates that the convergence speed of the proposed learning algorithm is much faster than that of conventional backpropagation algorithm. Furthermore, in the image recognition task, the recognition rate of our learning algorithm is higher than of conventional backpropagation algorithm.

Segmentation of Objects with Multi Layer Perceptron by Using Informations of Window

  • Kwak, Young-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권4호
    • /
    • pp.1033-1043
    • /
    • 2007
  • The multi layer perceptron for segmenting objects in images only uses the input windows that are made from a image in a fixed size. These windows are recognized so each independent learning data that they make the performance of the multi layer perceptron poor. The poor performance is caused by not considering the position information and effect of input windows in input images. So we propose a new approach to add the position information and effect of input windows to the multi layer perceptron#s input layer. Our new approach improves the performance as well as the learning time in the multi layer perceptron. In our experiment, we can find our new algorithm good.

  • PDF

Self-generation을 이용한 퍼지 지도 학습 알고리즘 (Fuzzy Supervised Learning Algorithm by using Self-generation)

  • 김광백
    • 한국멀티미디어학회논문지
    • /
    • 제6권7호
    • /
    • pp.1312-1320
    • /
    • 2003
  • 본 논문에서는 하나의 은닉층을 가지는 다층 구조 신경망이 고려되었다. 다층 구조 신경망에서 널리 사용되는 오루 역전파 학습 방법은 초기 가중치와 불충분한 은닉층 노드 수로 인하여 지역 최소화에 빠질 가능성이 있다. 따라서 본 논문에서는 퍼지 단층 퍼셉트론에 ART1을 결합한 방법으로, 은닉층의 노드를 자가 생성(self-generation)하는 퍼지 지도 학습 알고리즘을 제안한다. 입력층에서 은닉층으로 노드를 생성시키는 방식은 ART1을 수정하여 사용하였고, 가중치 조정은 특정 패턴에 대한 저장 패턴을 수정하도록 하는 winner-take-all 방식을 적용하였다. 제안된 학습 방법의 성능을 평가하기 위하여 학생증 영상을 대상으로 실험한 결과. 기존의 오류 역전파 알고즘보다 연결 가중치들이 지역 최소화에 위치할 가능성이 줄었고 학습 속도 및 정체 현상이 개선되었다.

  • PDF

Application of machine learning in optimized distribution of dampers for structural vibration control

  • Li, Luyu;Zhao, Xuemeng
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.679-690
    • /
    • 2019
  • This paper presents machine learning methods using Support Vector Machine (SVM) and Multilayer Perceptron (MLP) to analyze optimal damper distribution for structural vibration control. Regarding different building structures, a genetic algorithm based optimization method is used to determine optimal damper distributions that are further used as training samples. The structural features, the objective function, the number of dampers, etc. are used as input features, and the distribution of dampers is taken as an output result. In the case of a few number of damper distributions, multi-class prediction can be performed using SVM and MLP respectively. Moreover, MLP can be used for regression prediction in the case where the distribution scheme is uncountable. After suitable post-processing, good results can be obtained. Numerical results show that the proposed method can obtain the optimized damper distributions for different structures under different objective functions, which achieves better control effect than the traditional uniform distribution and greatly improves the optimization efficiency.