The Third AFSS(1998). 113—117

Self-Relaxation for Multilayer Perceptron

Cheng-Yuan Liou and Hwann-Tzong Chen

Dept. of Computer Science and Information Engineering, National Taiwan

University. Taipet, Taiwan. R.O.C.
Tel: 8862-23625336 ext 515, Fax: 8862-23628167, Email: cyliou@csie.ntu.edu.tw.

Abstract

We propose a way to show the inherent learning complex-
ity for the multilayer perceptron. We display the solution
space and the error surfaces on the input space of a sin-
gle neuron with two inputs. The evolution of its weights
will follow one of the two error surfaces. We observe that
when we use the back-propagation (BP) learning algorithm
{1]. the wights can not jump to the lower error surface
due to the implicit continuity constraint on the changes of
weights. The self-relaxation approach is to explicitly find
out the best cornbination of all neurons’ two error surfaces.
The time complexity of training a multilayer perceptron by
self-relaxation is exponential to the number of neurons.
Keywords: Back-propagation algorithm, Multilayer per-
ceptron, Neural network.

1.Introduction

1t has been studied that the inherent complextiy of train-
ing a multilayer perceptron is NP-complete [2]{3]{4]. This
suggests that any training algorithm should display such
fact in one way or another. We examine the existing algo-
rithm with a new viewpoint and develop an algorithm with
such complexity explicitly.

The error surface (usually the energy surface) and the so-
lution space for the delta learning rule were commonly dis-
played on weight space. Using this rule to reduce the error,
the weights will be adjusted in the negative error gradient
direction or the down slope direction in the weight space.
The disadvantage of this kind display is that we can hardly
realize (see) the movements and locations of the decision
hyperplanes through observing the evolution weights. Be-
sides. some important properties like the positive side of
each decision hyperplane are also invisible in the weight
space. Instead of the common display. we display the er-
ror surfaces and the solution space on input space. This
display will provide the learning paths of the decision hy-
perplanes on the input space. Since a hyperplane has two
sides. we can obtain two error surfaces according to which
side of the hyperplane is positive. When we initialize the

weights to form a decision hyperplane with a wrong posi-
tive side, the reduction of the error using the BP algorithm
will follow the same surface which contains the initial error
to keep continuity in the changes of weights. This kind of
reduction will take much more evolution to detour to the
solution. There is little chance to jump into the other lower
error surface because the continuity requirement made on
the updation of the weights. Thus, if we add the jumping
capability called self-relaxation to the BP algorithm, the
error can drop down immediately in the relaxation. This
jumping can be achieve by reversing the signs of all weights
of a neuron. We interrupt the training process by insert-
ing this relaxation whenever the training errors show little
improvement to see if there exists a better error surface
to evolve. If there exists a lower error surface, we reverse
the signs of a neuron’s weights accordingly to switch the
evolution in this surface. We illustrate the whole idea for
a single neuron with two inputs in the next section and
extend this idea to a multilayer perceptron in section 3.

2.Single Neuron Example

We use a single neuron example to illustrate the main
idea of the relaxation. Consider a neuron with two in-
puts {z1.z2}. plus a fixed input —1 for threshold shown
in Fig. 1{a). The logic we want to implement is shown
in Fig. 1(b). The four input patterns are {r(ll).zgl)} =
(1.1} {227y = (1 =1 (0.2} = {~1.1}. and
{.7:(14),1:(24)} = {—-1.-1}. The logic we want to imple-
ment is ={~z; A z2). An arbitrary line in this figure is
set as L : =2z, + 2z — 1 = 0. Its corresponding two
decision lines are (1) = {w; = -2 wy = 2. wz = 1} or
S = {w, = 2wy = -2, w3 = —1}. 52 is obtained by
reversing the sigus of all {w;} in S*). Both S and 5
are two possible decision lines corresponding to the line L.
In this example. S(!) is not the proper solution because the
positive side of this decision line is opposite to the desired.
The better decision line of the two {S(}) S} is the one
gives smaller error. With the weights being initialized as
random values. we can not expect that a decision line has
a correct or better positive side.

—113-

(a) -1 (b)
X2 L
= (1]
X(a;, ay)
0 Xy
B @
()

Figure 1:

Though the decision line can be determined by the three
values, {wi, ws,w3}, we try to represent a line with a point
on the input space with the coordinates of z; and z». As
shown in Fig. 1(c), the line L can be represented by a
perpendicular point X (a;, az) where a; and a; are obtained
by solving the following equations.

wy aj wo an

= o ST
w3 aj +a; w3 ay +a;

The corresponding decision lines which pass (a4, a2) and

perpendicular to XO is Clafimn+ g8z - 1) =0
1 2 1 2

Without loss of generality we set C = 1 and C = —1 for
these two decision lines seperately. The magnitude of C
will not affect the output error. This is because the hard-
limited function will give +1 or —1 no matter how large the
magnitude is. Both decision lines have the same a; and a-
values. So, there are two errors Eg(l) and Eg?) for all four
input patterns on the point X and they can be calculated
as

4
EY = 53 (o)) i=1~2
p=1
ox(,i) = a(netﬁ,”)
= 2(-————}——(1.—)-——1), p=1~4.
1+ exp(—nety’) 2

Where the variable net:, of the sigmoid function o(.) has
two possible values for all patterns.

ay (p) 2 (»)
netl) = L Wy "2)
P at + a3t al+a3"?
(C=1)
7)) _ a1 (») 22 ()
net!? = —nettV) = — P~ s+ 1
P r al+ai’! a? +al’?
C = —l)

We calculate Ef\i) at each point and plot the two error
surfaces on input space. The two error surfaces on input
space are shown in Fig. 2(a) and 2(b) seperately. .

(b)

Figure 2: The two error surfaces on input space where

C=1in(a)and C = —11in (b)

The actual error surface can be obtained by replacing the
sigmoid function with the hard-limited activation function

()
; i +1 , nety’ >0
a(net}(,’)) = sgn(netl(,) = { 4 netgi) <0

We plot these two actual error surfaces in Fig. 3(a) and
(b). The solution space where E;ﬁq = 0 on input space is
shown in Fig. 4. Each point inn the shaded area represents
a decision line. Note that the minima of error in Fig. 2(a)
and Fig. 3(a) are not zero. There exists no solution in the
surface with C' = 1. This is because the positive side of the
decision line is wrong.

(b)

Figure 3: The two actual error surfaces on input space
where C' = 1in (a) and C = -1 in (b).

—114—

Figure 4: The shaded area is the solution space where
E'f\f) = 0 on input space.

Fig. 5(a) shows a learning path of the decision line using
the BP algorithm. We see that this path will follow down
and keep in one of the error surface as marked by C = 1
Fig. 2(a), where it starts the evolution. This path will not
jump to the lower error surface unless it closes to the origin.
Once a weight’s sign is reversed, the path will switch to the
opposite place and evolve from there. This means when d,
and o, have different signs, o, will pass zero (0, = 0) in
order to reverse its sign to match with d,. When we re-
verse the weights’ signs, o, will directly reverse its signs to
match the dy and skip the detour. Normally the path will
continuously follow the error surface to reach a continuous
place where they can switch to the other lower error sur-
face. This will spend much more iterations to detour to
the solution space. The reason is that the movements of
the hyperplanes {adjustments of weights) must satify the
continuity requirement with which the BP algorithm is de-
rived. Fig. 5(b) shows a path which starts with a good
positive side.

Now we can modify the training algorithm to make it
have the jumping capability. We interrupt the training
algorithm whenever it shows little improvement and relax
the neuron to move to a lower actual error surface. We call
this step the self-relaxation step. In this step, both two
actual error values corresponding to the current point (or
line) are checked. We choose the decision line with smaller
error value and set the positive side of the line accordingly.
We will reverse the signs of the neuron’s weights if the
positive side of the line is altered.

The results of the training processes using regular and
modified algorithm are shown in Fig. 5(a), Fig. 6 and Fig.
7(a)(b). The weights are initialized as {w; = —1.0, w2 =
1.5, w3 = 2.0} and the learning rate n is 0.3. Note that
in Fig. 7(b) the error drops down in the fifth iteration
where the relaxation occurs. The performance of modified
algorithm is much better than the regular one.

3.Multilayer perceptron with self-relaxation

We extend the above idea to the multilayer perceptron.
An example network is shown in Fig. 8. Let N be the

L
sart
1 n Rt
A
05 wd 16
0%
° L0 O3
¢ 0 C"r ; ;
-05 *
-1
1_5(5 -1 05 a 05 t 15
(a) x1
15
1 fat
o Y,
$ 0
-85
-1
B R S VR P
(b) xi
Figure 5: The evolution paths of the decision lines using BP
algorithm. The weights are initialized as {w; = —1.0, ws =
1.5, w3 =2.0}in(a) and {w; = 1.0, wp = —1.5, w3 = —2.0}
in (b).
15
«
; m%z»/nmm
as wod
Y0
0%
-1
‘-515 1 0.5 Q 05 1 15
x

Figure 6: The evolution path of the decison line using self-
relaxation. In both 5(a) and 6, the weights are initialized
as {wy = -1.0,wy = 1.5, w3 = 2.0}.

total number of neurons in the network. In this example
N = 14 »

Let {.wf,”.i = 1,2} be the two possible decision hy-
perplanes for the current hyperplane of the nth neuron.
One decision hyperplane can be obtained by reversing the
signs of all weights of the other decision hyperplane. Let
{SS,‘), i = 1,2} be the two candidate states for the nth neu-
ron. There are 2V kinds of combinations of such reverse
states for the network. We denote {ST;,j =1 ~ 2V} to
be the all combinations of these reverse states. During the
relaxation we count the total number of error bits in the
output layer corresponding to each ST, for all inputs and
select the state, STy, with minitnum number of error
bits. We recommend to design special architecture to re-
duce the cost for large N. When there are more than one
reverse states which give the same number of error bits,
all of them will be evolved. We interrupt the BP training

—-115—

(a‘l teration
6
St \retax
4
w3
2
1
[}
. [} 20 a0 60 60 100
(b , feratton

Figure 7: The learning curves. (2) Use BP algorithm for
the training in Fig. 5(a). (b) Use modified algorithm (self-
relaxation) for training.

process with this relaxation whenever the training shows
little improvement.

We use the multilayer perceptron as shown in Fig. 8(a)
to learn the patterns which are shown in Fig. 8(b).
This perceptron has six neurons in the first hidden layer,
four neurons in the second hidden layer and four neu-
rons in the output layer. Each neuron is also con-
nected to a fixed input with the value —1. The train-
ing patterns are ten capital letters {4 ---J} in the size of
8 x 12 bits. The desired outputs for these patterns are
{0000,0001,0010,0011,0100,0101,0110,0111, 1000, 1001}.
For each iteration of the training process, we add some
noises to the input patterns by changing 10 of the 96 bits of
each pattern randomly. We use the BP algorithm and the
modified algorithm to train the network. The weights are
initialized randomly from —2 to 2 in both cases. Note the
E(ST;) is the total actual output error where we present
all training patterns to the network. This error is obtained
by reversing the neurons’ weights according to ST;. The
learning curves of both algorithms are shown in Fig. 9.
By observing the performance of these two algorithms, we
find that self-relaxation can help for getting lower error and
achieving better solution when the training process is in-
terrupted in suitable situations. From experience, better
results can be obtained by applying the relaxation inten-
sively at the begining stage of evolution.

When N is large, it is time-consuming to relax the net-
work to find the reverse state ST, which gives abso-
lute minima among all 2¥ combinations. Actually we
search local minima among neighboring vertices in this N-
dimensional cube in a similar way as the simplex method.
We may partition the relaxation into M time intervals. For

N7
N ,‘6’)\"\}’(&“4\ S

yl
y2

O
X\

.

y3

AN

v

y4

(a)

(b)

Figure 8:

3 50 100 150 200
terason

Figure 9: Typical training curves for the BP algorithm and
the modified algorithm with self-relaxation.

each time interval, we relax (reverse) one neuron during
this interval where reversing this neuron will give minimum
error among those using all N neurons and then proceed
to the next interval.

Finally, we provide two algorithms by descending the
hyperplane down the error surface in input space as in Fig.
2 and 3. The error function in input space is the same as
before, Ex. The training formulas for the single neuron in
Fig. 1(a) in the input space are as follows.

SEx : 1 —a? + a?
= dy, — Z(1 - N2
Ba, p;(p o QU = o oy
N —2aias)
@+ a3
35}{ 4 1 -2(1&(12
= d; - = - 2 3)
das p:1(P Op)(2(1 Op))((a—I_—“_{_ af’)zzl
(l% - (lg)
MCET e

~116—

The adjustments of the point X(a,, a;) are as follows.

da - 0Ex
! " (9a1
OE

boz = - Baf

As for multilayer perceptrons we provide the following
learning algorithm for reference.

Given P training pairs

{zl, d], Z, dz, ey Zp, dp},

where z; is (I + 1) x 1),d;is (K x 1),and 1 =1,2,..., P.
Note that the (I + 1)’th component of each z; is of value
—1 since input vectors have been augmented. Size J of
the hidden layer having outputs y is selected. Note that
the (J + 1)’th component of y is of value —1, since hidden
layer outputs have also been augmented; y is (J x 1) and
o is (K x 1). The weight of every augmented component
is assigned to the value 1 and is not changed during the
training process.

Step 1: > 0, E\ngr chosen.

Weights W and V areinitialized at small random values;
Wis (K x (J + 1)), Vis (J x (I+1)). The entries of th
(J + 1yth column of W and the (I + 1)’th column of V
are all assigued to the value 1.

g—1,p—1,FE <0

Step 2: Training step starts here.

Input is presented and the layers’ outputs computed:

Z — Zp, d — dp
Y = f(vj‘«z), forj=1,2,...,J+1
where v;, a column vector, is the j’th row of V, and
o — f(wiy), fork=1,2,. . K

where wy, a column vector, is the k’th row of W.

Step 3: Error value is computed:
E « %(dk —o)+ E fork=1,2..,K

Step 4: Error signal vectors &, and é, of both layers are
computed. Vector 8, is (K x 1), 8, 1s (J x 1).

The error signal terms of the output layer in this step
are

o = S(dp —0k)(1 —0F), for k =1,2,.., K

The error signal terms of the hidden layer in this step
are «
6!”- = %(1 — y]l) Zk:l 6ok;ﬁ+—az—?mz—;, for] = 1,2. J
Step 5: Oulput layer weights are adjusted:

Qpj «— akj + noor Aty
r ~2dk18k 1

(ag, +ag +-+ai ;)
"bakﬁak 3
(ag +og,++ag,)?

A= ail+ai2+_..—azl-+4..+a;‘:]
(a:l+afj+,.,+ak1)3
~2axjax
L (a7, +ai, +...+ai,)? i
fork=1,2,.. . Kand j=1,2,...,J

Step 6: Hidden layer weights are adjusted:
bjt — bgj + nﬁijtz

I —2biy by h
(b.l+b.2+..,+b)2

J _J2b b H
GL T+ +b0)?

2 2 2 2
b2 407+ —bl . 402,
[R I

7

—217.[5"
(b]’-fl+bf.,+“.+b3,)2
forj=1,2,..,Jand i1 =1,2,..,1

Step 7: f p< Pthenp—p+1, g — g+ 1, and go to Step
2; otherwise, go to Step 8.

Step 8: The training cycle is completed.
For E < Ep.4r terminate the training session. Output
weights W, V, ¢, and E.

If £ > Epnaz, the E — 0, p — 1, and initiate the new
training cycle by going to Step 2.

Reference

1. D.E. Rumelhart, G.E. Hinton, and R.J. Williams
"Learning representations by back-propagating errors”,
Nature (London), 323, 533-536, 198€.

2. A.L. Blum and R.L. Rivest "Training a 3-Node Neural
Network is NP-Complete”, Neural Networks, Vol. 5, 117-
127, 1992.

3. J. Sima”Back-propagation is not Efficient”, Neural Net-
works, Vol: 9, 1017-1023, 1996.

4. D.H. Wolpert and W.G. Macready ”No free lunch theo-
rems for search”, Tech. Rep. No. SFI-TR-95-02-010, Santa
Fe Institute

—-117-

