• 제목/요약/키워드: percentage of shear reinforcement

검색결과 16건 처리시간 0.02초

Post-Damage Repair of Prestressed Concrete Girders

  • Ramseyer, Chris;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권3호
    • /
    • pp.199-207
    • /
    • 2012
  • Concrete is an economical construction material and for that reason it is widely used in buildings and infrastructures. The use of deicing salts, expansion joint failure, and freeze-thaw cycles have led to concrete bridge girders experiencing corrosion of steel reinforcement and becoming unsafe for driving. The goal of this research is to assess the effectiveness of current and possible repair techniques for the end region of damaged prestressed concrete girders. To do this, three American Association of State Highway and Transportation prestressed concrete girders were tested to failure, repaired, and retested. Three different repair materials were tested including carbon fiber, glass fiber, and surface mounted rods. Each different repair material was also tested with and without injected epoxy. Comparisons were then made to determine if injecting epoxy had a positive effect on stiffness and strength recovery as well as which repair type regained the largest percentage of original strength.

A new method for repair of fiber reinforced concrete corbels using steel threaded rods

  • Gulsan, Mehmet Eren;Shaikhan, Mustafa A.
    • Earthquakes and Structures
    • /
    • 제15권2호
    • /
    • pp.165-178
    • /
    • 2018
  • The aim of this study is to investigate the efficiency of using threaded rods and steel profiles to produce a steel confining system for rehabilitation of damaged concrete corbels for the first time in literature. Some of the specimens were repaired by crack repair epoxy before being confined for further enhancement. A total of 19 two sided damaged corbels were used in the study with different mechanical properties and parameters but similar dimensions. The differences were in rehabilitation style, shear span, fiber percentage, reinforcement steel diameter, and concrete strength. The rehabilitated specimens were loaded with vertical load until failure. Four different configurations were used in the investigation. Test results show that the proposed rehabilitation technique is effective to enhance the load capacity of the corbels and to improve their ductility. Moreover, new formulations were proposed to calculate the load capacity of the rehabilitated corbels. A good fit was observed between numerical and experimental results.

Behavior of lightweight aggregate concrete voided slabs

  • Adel A. Al-Azzawi;Ali O, AL-Khaleel
    • Computers and Concrete
    • /
    • 제32권4호
    • /
    • pp.351-363
    • /
    • 2023
  • Reducing the self-weight of reinforced concrete structures problem is discussed in this paper by using two types of self-weight reduction, the first is by using lightweight coarse aggregate (crushed brick) and the second is by using styropor block. Experimental and Numerical studies are conducted on (LWAC) lightweight aggregate reinforced concrete slabs, having styropor blocks with various sizes of blocks and the ratio of shear span to the effective depth (a/d). The experimental part included testing eleven lightweight concrete one-way simply supported slabs, comprising three as reference slabs (solid slabs) and eight as styropor block slabs (SBS) with a total reduction in cross-sectional area of (43.3% and 49.7%) were considered. The holes were formed by placing styropor at the ineffective concrete zones in resisting the tensile stresses. The length, width, and thickness of specimen dimensions were 1.1 m, 0.6 m, and 0.12 m respectively, except one specimen had a depth of 85 mm (which has a cross-sectional area equal to styropor block slab with a weight reduction of 49.7%). Two shear spans to effective depth ratios (a/d) of (3.125) for load case (A) and (a/d) of (2) for load case (B), (two-line monotonic loads) are considered. The test results showed under loading cases A and B (using minimum shear reinforcement and the reduction in cross-sectional area of styropor block slab by 29.1%) caused an increase in strength capacity by 60.4% and 54.6 % compared to the lightweight reference slab. Also, the best percentage of reduction in cross-sectional area is found to be 49.7%. Numerically, the computer program named (ANSYS) was used to study the behavior of these reinforced concrete slabs by using the finite element method. The results show acceptable agreement with the experimental test results. The average difference between experimental and numerical results is found to be (11.06%) in ultimate strength and (5.33%) in ultimate deflection.

FRP 보강적층판의 접착성능 및 파괴인성평가 (Adhesive Performance and Fracture Toughness Evaluation of FRP-Reinforced Laminated Plate)

  • 정홍주;홍순일
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권6호
    • /
    • pp.868-875
    • /
    • 2015
  • 목구조물 접합부에 기존의 슬릿(slit)형 강판을 대체하기 위해서 FRP (Fiber Reinforced Plastic) 보강적층판을 제작하였다. 보강재, 접착제 종류에 따라 총 4가지 타입의 FRP 보강적층판을 제작하였으며, 접합부 적용 전 KSF 3021과 KSF 2160에 의거한 박리실험과 ASTM D5045-99에서 제안한 Compact Tension (CT)형 파괴인성 시험을 실시하였다. 접착성능 시험결과 GFRP textile, GFRP sheet, GFRP Textile-Sheet 타입의 FRP 보강적층판은 침지 및 내수침지박리 시험에서 모두 KS 기준인 박리율 5% 이하를 만족하였다. 그러나 Aramid 타입의 시험편은 침지박리율 4.8%로 기준을 만족하였으나 내수침지박리율 70%로 합격기준을 만족하지 못하였다. 파괴인성 시험결과 단판만을 교차적층 시킨 대조군시험편보다 목재 대비 보강재 체적비를 23%로 함으로서 FRP 보강적층판의 내력이 2~4배 증가하였다. 그중에서도 GFRP Textile-Sheet 타입의 시험편이 하중 평행방향의 유리섬유 배열로 인해 할렬파단을 억제하면서 대조군 대비 응력확대계수 비가 61% 증가되어 파괴를 가장 크게 억제하는 것으로 확인되었다. FRP 보강적층판과 비금속 dowels을 사용한 접합부의 인장형 전단내력은 금속접합에 비해 약 12% 낮은 내력이 측정되었다.

Experimental investigation on UHPC beams reinforced with GFRP and steel rebars and comparison with prediction equations

  • Parvin, Yousef Abbasi;Shaghaghi, Taleb Moradi;Pourbaba, Masoud;Mirrezaei, Seyyed Saeed;Zandi, Yousef
    • Advances in concrete construction
    • /
    • 제14권1호
    • /
    • pp.45-55
    • /
    • 2022
  • In this article, the flexural and shear capacity of ultra-high-performance fiber-reinforced concrete beams (UHPFRC) using two kinds of rebars, including GFRP and steel rebars, are experimentally investigated. For this purpose, six UHPFRC beams (250 × 300 × 1650 mm) with three reinforcement ratios (ρ) of 0.64, 1.05, and 1.45 were constructed using 2% steel fibers by volume. Half of the specimens were made of UHPFRC reinforced with GFRP rebars, while the other half were reinforced with conventional steel rebars. All specimens were tested to failure in four-point bending. Both the load-deformation at mid-span and the failure pattern were studied. The results showed that utilizing GFRP bars increases the flexural strength of UHPFRC beams in comparison to those made of steel bars, but at the same time, it reduces the post-cracking strain hardening. Furthermore, by increasing the percentage of longitudinal bars, both the post-cracking strain hardening and load-bearing capacity increase. Comparing the experiment results with some of the available equations and provisions cited in the valid design codes reveals that some of the equations to predict the flexural strength of UHPFRC beams reinforced with conventional steel and GFRP bars are reasonably conservative, while Khalil and Tayfur model is un-conservative. This issue makes it essential to modify the presented equations in this research for predicting the flexural strength of UHPFRC beams using GFRP bars.

실내모형실험을 통한 모래지반에서의 중공블록 보강효과 분석 (Analysis of Reinforcement Effect of Hollow Modular Concrete Block on Sand by Laboratory Model Tests)

  • 이철희;신은철;양태철
    • 한국지반공학회논문집
    • /
    • 제38권7호
    • /
    • pp.49-62
    • /
    • 2022
  • 중공블록 기초공법은 육각형의 벌집구조로 제작된 콘크리트 중공블록을 혼합쇄석과 함께 치환 설치하여 연약지반을 보강하고 인위적인 층상지반을 형성하여 얕은 기초의 지지력 증가와 침하량을 감소시키는 지반보강 기초공법이다. 벌집구조의 중공블록은 기하학적으로 경제적인 구조임과 동시에 힘을 균형 있게 배분하는 안정적인 구조로 기초와 쇄석치환 보강층 사이에서 보강재로써 보강효과를 유발하는 것을 단편적으로 확인하였으나, 거동특성 규명은 아직 미비한 상태이다. 본 연구에서는 실내모형실험을 통해 보강재로써 중공블록의 보강효과를 파악하기 위해 실내 평판재하시험을 수행하였다. 하중-침하 곡선에서 비채움 조건(A-1-N)에서는 관입전단파괴가 발생한 반면에 채움 조건(A-1-F)은 항복이 나타나지 않은 선형 곡선을 나타내며, 원지반 대비 3배의 보강효과를 확인하였다. 중공블록의 구속효과 모식도를 바탕으로 중공블록 콘크리트부의 접지응력과 중공부 구속효과에 의한 수직응력 그리고 수평응력이 작용한 내벽의 내주면마찰력에 대한 관계식을 제안하였다. 관계식 계산결과 중공블록의 콘크리트부의 접지력은 재하하중의 약 65%이고, 중공부 단면에 작용하는 구속 수직력은 약 16.5%이고, 내주면마찰력은 약 18.5%로 분담하는 것으로 나타났다. 본 연구를 통해 중공블록이 보강재로써 상재하중이 작용할 때, 중공블록의 중공부 하단에서는 구속효과로 수직응력이 발생하고, 수평방향이 구속상태인 내부 모래에서 수평응력이 내벽에 작용하여 내주면마찰력이 발생하여 중공블록 콘크리트의 관입을 억제하고 선단 응력이 감소하는 거동특성을 규명하였다.