• Title/Summary/Keyword: pentose

Search Result 92, Processing Time 0.028 seconds

Sex Differences in the Glucose-6-Phosphate Dehydrogenase Activity of the Rat Livers at Various Stages of Development (출생전후 및 성별로 본 쥐의 간세포에서의 G-6-PD 활성)

  • Hahn, Sahsook
    • The Korean Journal of Zoology
    • /
    • v.17 no.1
    • /
    • pp.17-22
    • /
    • 1974
  • The G-6-PD (glucose-6-phosphate dehydrogenase) activity, the first step in the pentose phosphate shunt, of rat livers during prenatal and pstnatal development in different sexes was studied. The enzyme activity is very high (54.2 units) at 16 days of embryo ad then decreases to a low level (17.6 units) at 13days after birth. There are significant increase between 13 and 15 days of age and continuously increases to the level of 53.2 units at 19days of age. The G-6-PD activity in female rat livers was slightly higher than in males.

  • PDF

A Study on the Carbohydrates of the Genus Acer Plants Growing in Korea (한국산(韓國産) 단풍나무속(屬) 식물(植物)의 당(糖)에 관한 연구)

  • Baik, Duk-Woo;Lee, Suh-Yun
    • Korean Journal of Pharmacognosy
    • /
    • v.5 no.3
    • /
    • pp.155-157
    • /
    • 1974
  • The quantity of pentose, hexose and sucrose which are contained in the sap of 16 different plant species of the genus Acer growing in Korea is determined. The results showed that, of these 16 species, Acer mono MAX. contained the largest amount of pentose (20.4%) and that A. mono MAX. var. paxii HONDA contains the next largest(19.7%). Also A. mono MAX. contained the largest amount of hexose (17.4%) and A. mono MAX. var. paxii HONDA contained the next largest(15.1%). The plants which contained the largest amounts of sucrose was A. mono MAX. and A. takesimense $N_{AKAI}$ (1.9%). The plant containing the next largest amount of sucrose was A. tschonoskii MAX. var. rubripes $N_{AKAI}$(1.8%).

  • PDF

Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in Streptomyces lividans TK24

  • Jin, Xue-Mei;Chang, Yong-Keun;Lee, Jae Hag;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1867-1876
    • /
    • 2017
  • Most of the biosynthetic pathways for secondary metabolites are influenced by carbon metabolism and supply of cytosolic NADPH. We engineered carbon distribution to the pentose phosphate pathway (PPP) and redesigned the host to produce high levels of NADPH and primary intermediates from the PPP. The main enzymes producing NADPH in the PPP, glucose 6-phosphate dehydrogenase (encoded by zwf1 and zwf2) and 6-phosphogluconate dehydrogenase (encoded by zwf3), were overexpressed with opc encoding a positive allosteric effector essential for Zwf activity in various combinations in Streptomyces lividans TK24. Most S. lividans transformants showed better cell growth and higher concentration of cytosolic NADPH than those of the control, and S. lividans TK24/pWHM3-Z23O2 containing zwf2+zwf3+opc2 showed the highest NADPH concentration but poor sporulation in R2YE medium. S. lividans TK24/pWHM3-Z23O2 in minimal medium showed the maximum growth (6.2 mg/ml) at day 4. Thereafter, a gradual decrease of biomass and a sharp increase of cytosolic NADPH and sedoheptulose 7-phosphate between days 2 and 4 and between days 1 and 3, respectively, were observed. Moreover, S. lividans TK24/pWHM3-Z23O2 produced 0.9 times less actinorhodin but 1.8 times more undecylprodigiosin than the control. These results suggested that the increased NADPH concentration and various intermediates from the PPP specifically triggered undecylprodigiosin biosynthesis that required many precursors and NADPH-dependent reduction reaction. This study is the first report on bespoke metabolic engineering of PPP routes especially suitable for producing secondary metabolites that need diverse primary precursors and NADPH, which is useful information for metabolic engineering in Streptomyces.

Effect of Apple Hemicellulose on the Ca-Pectate Gel Formation (사과의 Hemicellulose가 Ca-Pectate Gel형성에 미치는 영향)

  • Kim, Young-Ji;Kim, Chang-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.1
    • /
    • pp.13-17
    • /
    • 1988
  • $HF_1$(1H KOH soluble hemicellulose fraction), $HF_2$(2H KOH soluble hemicellulose fraction) $HF_3$(3H KOH soluble hemicellulose fraction) and $HF_4$(4H KOH soluble hemicellulose fraction) were fractionated from Fuji crude cell wall and purified using Sephacryl S-500 to determine the effects of these hemicellulosic fractions on the Ca- pectate gel formation. By increasing of KOH concentration, from 1 to 4N, hexose peas became higher in led, and molecula weights, especially pentose peaks in high molecular weight. Hemicellulose fractions using gel filtration were composed of $8{\sim}10$ peaks which were $10^4{\sim}143{\times}10^4$ molecular weight. Higher values of hardness, adhesiveness and gumminess were found in low molecular weight than in high molecular weight, also in hexose and uronic acid contained than in hexose contained.

  • PDF

Function of heat shock protein and Immune response (Heat shock protein의 기능과 면역 반응)

  • 김세진
    • The Microorganisms and Industry
    • /
    • v.25 no.1
    • /
    • pp.2-9
    • /
    • 1999
  • A study was made on enzymes of carbohydrate metabolism in T. concretivorus grown with and without glucose. The present results show that T. concretivorus possesses high activities of pentose shunt pathway and related enzymes, glucokinase, G-6-P dehydrogenase, 6-PG dehydrogenase, and phosphoglucoisomerase, but low activities of enzymes unique to EMP(fructose-1,6-diphosphate aldolase). Although the synthesis of the latter enzymes remains largely unaffected by the growth enviroment, that of the former is stimulated by glucose. And the failure to detect ED pathway enzymes in cells grown in thiosulate or thiosulfate-glucose medium eliminates the ED pathway as a significant route of glucose catabolism in T.concretivorus. These results suggest that pentose shunt pathway performs an energetic role in glucose metabolism by T.concretivorus with EMP as a subway. The absence of ED pathway and the presence of pentose shunt pathway which is the major route of catabolism in T.concretivorus are similar to those of other obligately chemolitho-trophic thiobacilli. The G-6-P and 6-PG dehydrogenase are both NAD and NADP specific, but MAD predominant. However, the 3-PGAL dehydrogenase is only NAD specific. Since the specific activity of 3-PGAL generated from glucose is converted mainly into pyruvate which is channeled into the TCA cycle. All enzymes of the TCA cycle tested and NADH oxidase are detected in the cells of T.concretivorus grown in thiosulfate. The specific activities of fumarase and isocitrate dehydrogenase are high and others are low. The presence of two isocitrate dehydrogenase (NAD-and NADP-linked) may have important regulatory function for this organism. The activity of NAD-oxidase, which is implicated in the energy generating metabolism, was very high in the crude cell-free extract of T.concretivorus, recording 55.11 m.mu. mole/min/mg protein. This well coincides with the fact that activities of NAD-linked G-6-P dehydrogenase, 6-PG dehydrogenase and 3-PGAL dehydrogenase were high.

  • PDF

The enzymatic Studies on Metabolic Pathways in Thiobacillus conctetivorus (Thiobacillus concretivorus의 대사경로에 관한 효소학적 연구)

  • 하영칠
    • Korean Journal of Microbiology
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 1973
  • A study was made on enzymes of carbohydrate metabolism in T. concretivorus grown with and without glucose. The present results show that T. concretivorus possesses high activities of pentose shunt pathway and related enzymes, glucokinase, G-6-P dehydrogenase, 6-PG dehydrogenase, and phosphoglucoisomerase, but low activities of enzymes unique to EMP(fructose-1, 6-diphosphate aldolase). Although the synthesis of the latter enzymes remains largely unaffected by the growth enviroment, that of the former is stimulated by glucose. And the failure to detect ED pathway enzymes in cells grown in thiosulate or thiosulfate-glucose medium eliminates the ED pathway as a significant route of glucose catabolism in T.concretivorus. These results suggest that pentose shunt pathway performs an energetic role in glucose metabolism by T.concretivorus with EMP as a subway. The absence of ED pathway and the presence of pentose shunt pathway which is the major route of catabolism in T.concretivorus are similar to those of other obligately chemolitho-trophic thiobacilli. The G-6-P and 6-PG dehydrogenase are both NAD and NADP specific, but MAD predominant. However, the 3-PGAL dehydrogenase is only NAD specific. Since the specific activity of 3-PGAL generated from glucose is converted mainly into pyruvate which is channeled into the TCA cycle. All enzymes of the TCA cycle tested and NADH oxidase are detected in the cells of T.concretivorus grown in thiosulfate. The specific activities of fumarase and isocitrate dehydrogenase are high and others are low. The presence of two isocitrate dehydrogenase (NAD-and NADP-linked) may have important regulatory function for this organism. The activity of NAD-oxidase, which is implicated in the energy generating metabolism, was very high in the crude cell-free extract of T.concretivorus, recording 55.11 m$\mu$ mole/min/mg protein. This well coincides with the fact that activities of NAD-linked G-6-P dehydrogenase, 6-PG dehydrogenase and 3-PGAL dehydrogenase were high.

  • PDF

Effects of Pentoses on 2-deoxy-D-Glucose Transport of the Endogenous Sugar Transport Systems in Spodoptera frugiperda Clone 9 Cells

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • Insect cells such as Spodoptera frugiperda Clone 9 (Sf9) cells are widely chosen as the host for heterologous expression of a mammalian sugar transport protein using the baculovirus expression system. Characterization of the expressed protein is expected to include assay of its function, including its ability to transport sugars and to bind inhibitory ligands such as cytochalasin B. It is therefore very important first to establish the transport characteristics and other properties of the endogenous sugar transport proteins of the host insect cells. However, very little is known of the transport characteristics of Sf9 cells, although their ability to grow on TC-100 medium strongly suggested the presence of endogenous glucose transport system. In order to investigate the substrate and inhibitor recognition properties of the Sf9 cell transporter, the ability of pentoses to inhibit 2-deoxy-D-glucose (2dGlc) transport was investigated by measuring inhibition constants $(K_i)$. To determine the time period over which of sugar into the Sf cells was linear, the uptake of 2dGlc 0.1mM extracellular concentration was measured over periods ranging from 30 seconds to 30 minutes. The uptake was linear for at least 2 minutes at the concentration, implying that uptake made over a 1 minute time course would reflect initial rates of the sugar uptake. The data have also revealed the existence of a saturable transport system for pentose uptake by the insect cells. The transport was inhibited by D-xylose and D-ribose, although not as effective as hexoses. However, L-xylose had a little effect on 2dGlc transport in the Sf9 cells, indicating that the transport is stereoselective. Unlike the human erythrocyte-type glucose transport system, D-ribose had a somewhat greater apparent affinity for the Sf9 cell transporter than D-xylose. It is therefore concluded that Sf9 cells contain an endogenous sugar transport activity that in some aspects resembled the human erythrocyte-type counterpart, although the Sf9 and human transport systems do differ in their affinity for cytochalasin B.

  • PDF

Heteroexpression and Functional Characterization of Glucose 6-Phosphate Dehydrogenase from Industrial Aspergillus oryzae

  • Guo, Hongwei;Han, Jinyao;Wu, Jingjing;Chen, Hongwen
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.577-586
    • /
    • 2019
  • The engineered Aspergillus oryzae has a high NADPH demand for xylose utilization and overproduction of target metabolites. Glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49) is one of two key enzymes in the oxidative part of the pentose phosphate pathway, and is also the main enzyme involved in NADPH regeneration. The open reading frame and cDNA of the putative A. oryzae G6PDH (AoG6PDH) were obtained, followed by heterogeneous expression in Escherichia coli and purification as a his6-tagged protein. The purified protein was characterized to be in possession of G6PDH activity with a molecular mass of 118.0 kDa. The enzyme displayed maximal activity at pH 7.5 and the optimal temperature was $50^{\circ}C$. This enzyme also had a half-life of 33.3 min at $40^{\circ}C$. Kinetics assay showed that AoG6PDH was strictly dependent on $NADP^+$ ($K_m=6.3{\mu}M$, $k_{cat}=1000.0s^{-1}$, $k_{cat}/K_m=158.7s^{-1}{\cdot}{\mu}M^{-1}$) as cofactor. The $K_m$ and $k_{cat}/K_m$ values of glucose-6-phosphate were $109.7s^{-1}{\cdot}{\mu}M^{-1}$ and $9.1s^{-1}{\cdot}{\mu}M^{-1}$ respectively. Initial velocity and product inhibition analyses indicated the catalytic reaction followed a two-substrate, steady-state, ordered BiBi mechanism, where $NADP^+$ was the first substrate bound to the enzyme and NADPH was the second product released from the catalytic complex. The established kinetic model could be applied in further regulation of the pentose phosphate pathway and NADPH regeneration of A. oryzae to improve its xylose utilization and yields of valued metabolites.

Effects of Yeast Addition during Salting and Preparation on Fermentation of Kimchi (소금절임과 김치담금시 효모의 첨가가 숙성에 미치는 영향)

  • 김순동;김경희;오영애
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1077-1085
    • /
    • 1998
  • The effects of yeast on the fermentation of kimchi were investigated. The treatments were divided into two groups; yeast treatment during salting of Chinese cabbage(YS) and yeast treatment added in kimchi preparation(YF kimchi). The edible periods of the kimchi after yeast treatment during salting (YS kimchi) was extended 4~5 days by the results of pH, acidity, sensory quality. The activities of amylase, polygalacturonase and galactosidase of YS kimchi were retained at low levels compared to non treated condition throughout all fermentation periods, whereas protease activity was not significant different from the non treated condition. In addition, the contents of total hexose and uronic acid did not show remarkable change throughout fermentation, but total pentose was decreased by more than 7% at the early middle stage of fermentation(7~14 day after soaking). The change of free amino acid content was decreased by 16~44% than the non treated condition. In contrast, in the YF kimchi, the sensory quality was not good. The activities of amylase, protease, polygalacturonase and gal actosidase were appreciably higher than that of the non treated condition. Meanwhile, the contents of total hexose, total pentose and uronic acid, as products of degradation of cell wall constituents by the above enzymes, were decreased by 18~68% throughout fermentation than the non treated con dition, and total free amino acids were higher than the YS kimchi. Thus, yeast treatment during salting was found to be more effective to extend the edible periods of the kimchi.

  • PDF