• Title/Summary/Keyword: penetration welding

Search Result 355, Processing Time 0.023 seconds

Butt Weldability for SS400 Using Laser-Arc Hybrid Welding (레이저-아크 하이브리드 용접을 이용한 SS400의 맞대기 용접 특성)

  • Kim, Jong Do;Myoung, Gi Hoon;Park, In Duck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.667-672
    • /
    • 2016
  • This study presents results of an experimental investigation of the laser-arc, hybrid, butt welding process of SS400 structural steel. Welding parameters including laser power, welding current and speed were varied in order to obtain one-pass, full-penetration welds without defects. The conditions that resulted in optimal beads were identified. After welding, hardness measurements and microstructure observations were carried out in order to study weld properties. The mechanical properties of both the base material and welded specimen were compared based on the results of tensile strength measurements. The yield and tensile strengths were found to be similar.

Improvement of LBW quality of Zircaloy-4 Spacer Grids for PWR Fuel Assembly (경수로 원전연료용 지르칼로이-4 지지격자 레이저용접품질 개선)

  • Kim, Soo-Sung;Song, Kee-Nam;Han, Hyoung-Jun
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.22-28
    • /
    • 2006
  • A spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the nuclear fuel assembly for Pressurized Water Reactors (PWRs). The weld quality of spacer grids in PWRs fuel is extremely important for the fuel assembly performance in the nuclear renter. The spacer grid welds are currently evaluated mainly by the metallographic examination although it reveals only cross-points which are welded by the laser beam. This experiment is also to compare the weldability of Zircaloy-4 spacer grids using by the GTA and LB. The effect of node geometries of spacer grids for the GTAW and LBW has been studied and optimum conditions of spacer grid welding have been found. Microstructures and micro-hardness of the GTA and LB welded zones have been also compared.

Hot Cracking Susceptibility in Welds of High Strength Al Alloys by Using DCSP-GTAW (DCSP-GTAW에 의한 고력 Al합금의 고온균열감수성에 대한 연구)

  • Ha Ryeo-Sun;Jung Byong-Ho;Park Hwa-Soon
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.65-72
    • /
    • 2004
  • The tendency and degree of hot cracking of high strength 5083, 6N01 and 7N01 Al alloy welds by using DCSP-GTAW through modified Varestraint test and autogenous butt welding were investigated. In hot cracking test, 6N01 alloy showed the highest susceptibility to hot cracking in the weld metal and HAZ. Cracking susceptibilities generally increased with increase of solidification temperature range of the base metal and bead penetration-to-width ratio of the weld metal. The cracks in welds of the alloys vertically formed to solid-liquid interface and propagated along with columnar grain boundaries. The fracture facets of cracks showed the typical morphology of solidification crack observed as dendritic structures. Especially, in 6N01 alloy, liquation cracks which were due to elements of Si, Fe and Mg also observed in HAZ near fusion boundary. In butt welding of different Al alloys, the bead crack was mainly occurred in the welds of 6N01, 7N01 and other Al alloys together with 6N01 or 7N01. In the butt welds of 7N01, it was found that the component of Cu had an effect on the higher susceptibility to the hot cracking.

A study on the effect to yongrak phenomenon of submerged arc welding depending on the plasma cutting surface characteristics (플라즈마 절단면 특성이 서브머지드 아크용접 용락 현상에 미치는 영향에 관한 연구)

  • Kim, Jeongtae;Jeong, Hyomin;Ji, Myoungkuk;Chung, Hanshik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.589-595
    • /
    • 2013
  • This paper was to study the effect to Yongrak phenomenon of I groove submerged arc welding depending on the plasma cutting surface characteristics, and how to reduce the causes and characteristics Yongrak phenomenon. Shipbuilding and marine structures is designed to use the thick plates and welded by high current to obtain deep penetration. Yongrak phenomenon has been occurred frequently depending on the quality of cutting surface and it makes degrade of the welding quality and modification of the welding. As a result, it was confirmed that I Groove plasma cutting characteristics get bevel form of 2 to 4 degrees to one side direction from the vertical position with Yongrak phenomenon. This is the main reason of Yongrak phenomenon in butt joint welding and 4 degree reverse bevel on the upper surface of base metal by submerged arc welding brought the effect of significant reduction of Yongrak phenomenon.

A comparative study of constant current control and adaptive control on electrode life time for resistance spot welding of galvanized steels (용융아연도금 강판 저항 점 용접 시 정전류 및 적응제어 적용에 따른 연속타점 특성 평가 및 고찰)

  • Seo, Jeong-Chul;Choi, Il-Dong;Son, Hong-Rea;Ji, Changwook;Kim, Chiho;Suh, Sung-Bu;Seo, Jinseok;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.47-55
    • /
    • 2015
  • With using adaptive control of the resistance spot welding machine, the advantage on electrode life time for galvanized steels has been addressed. This study was aimed to evaluate the electrode life time of galvanized steels with applying the constant current control and the adaptive control resistance spot welding process for a comparison purpose. The growth in diameter of electrode face was similar for both the constant current and the adaptive control up to 2000 welds. The button diameter was decreased with weld numbers, however, sudden increase in button diameter with use of the adaptive control after 1500 welds was observed. The peak load was continuously decreased with increasing number of welds for both the constant current and the adaptive control. The current compensation during a weld was observed with using the adaptive control after 1800 welds since the ${\beta}$-peak on dynamic resistance curve was detected at later weld time. The current compensation with adaptive control during resistance spot welding enhanced the nugget diameter at the faying interface of steel sheets and improved the penetration to thinner steel sheet.

MEASUREMENT OF SURFACE TENSION OF MOLTEN METALS IN ARC WELDING

  • Shinobu Satonaka;Shigeo Akiyoshi;Inoue, Rin-taro;Kim, Kwang-Ryul
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.757-762
    • /
    • 2002
  • Many reports have been shown that the buoyancy, electromagnetic force, surface tension, and gas shear stress are the driving forces of weld pool circulation in arc welding. Among them, the surface tension of molten metal plays an important role in the flow in weld pool, which are clarified by the specially designed experiments with small particles as well as the numerical simulations. The surface tension is also related to the penetration in arc welding. Therefore, a quantitative evaluation of surface tension is demanded for the development of materials and arc process control. However, there are few available data published on the surface tension of molten metals, since it depends on the temperature and the composition of materials. In this study, a new method was proposed for the evaluation of surface tension and its temperature dependence, in which it is evaluated by the equilibrium condition of acting forces under a given surface geometry, especially back surface. When this method was applied to the water pool and to the back surface of molten pool in the stationary gas tungsten arc welding of thin plate, following results were obtained. In the evaluation of surface tension of water, it was shown that the back surface geometry was very sensitive to the evaluation of surface tension and the evaluated value coincided with the surface tension of water. In the measurement of molten pool in the stationary gas tungsten arc welding, it was also shown that the comparison between the surface tension and temperature distribution across the back surface gave the temperature dependent surface tension. Applying this method to the mild steel and stainless steel plates, the surface tension with negative gradient for temperature is obtained. The evaluated values are well matched with ones in the published papers.

  • PDF

A Study on HAZ Softening Characteristics of Fiber Laser Weldment for High-Strength Steel (고장력강 파이버 레이저 용접부의 HAZ 연화 특성에 관한 연구)

  • Park, Min-Ho;Kim, Ill-Soo;Lee, Jong-Pyo;Jin, Byeong-Ju;Kim, Do-Hyeong;Kim, In-Ju;Kim, Ji-Sun
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.27-35
    • /
    • 2015
  • Laser welding sector in the automotive industry has been widely recognized as one of the most important bonding processes, such as parts welding. Efforts to improve productivity and weld quality have been progressing steadily. In addition, laser welding is suitable for welding process that can produce high-quality welds suitable for flexible production and small quantity batch productions. In order to ensure the rigidity of the material, high strength material are applied to more than 1 GPa class body parts and automotive bumper beams. However, not only the situation is that the trend of domestic research, but also development is based on product molding considering freedom of shape where reinforcement is applied to meet the safety regulations and high-speed crash performance, despite the use of high strength materials. The tendency for heat-affected zone (HAZ) softening phenomenon common in areas of laser welded high tensile steel welding confirmed the occurrence of weld softening effect according to the process parameters. Based on this, range of process parameters could be selected for ensuring weld quality.

Control of Weld Pool Size in GMA Welding Process Using Neural Networks (신경회로를 이용한 GMA 용접 공정에서의 용융지의 크기 제어)

  • 임태균;조형석;부광석
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.59-72
    • /
    • 1994
  • This paper presents an on-line quality monitoring and control method to obtain a uniform weld quality in gas metal arc welding (GMAW) processes. The geometrical parameters of the weld pool such as the top bead width and the penetration depth plus half back width are utilized to assess the integrity of the weld quality. Since a good quality weld is characterized by a relatively high depth-to-width ratio in its dimensions, the second geometrical parameter is regulated to a desired one. The monitoring variables are the surface temperatures measured at various points on the top surface of the weldment which are strongly related to the formation of the weld pool The relationship between the measured temperatures and the weld pool size is implemented on the multilayer perceptrons which are powerful for realization of complex mapping characteristics through training by samples. For on-line quality monitoring and control, it is prerequisite to estimate the weld pool sizes in the region of transient states. For this purpose, the time history of the surface temperatures is used as the input to the neural estimator. The control purpose is to obtain a uniform weld quality. In this research, the weld pool size is directly regulated to a desired one. The proposed controller is composed of a neural pool size estimator, a neural feedforward controller and a conventional feedback controller. The pool size estimator predicts the weld pool size under growing. The feedforward controller compensates for the nonlinear characteristics of the welding process. A series of simulation studies shows that the proposed control method improves the overall system response in the presence of changes in torch travel speed during GMA welding and guarantees the uniform weld quality.

  • PDF

A Study on the Application of SAW Process for Thin Plate of 3.2 Thickness in Ship Structure (선체외판부 3.2T 박판에 대한 SAW 용접 적용에 관한 연구)

  • Oh, Chong-In;Yun, Jin-Oh;Lim, Dong-Young;Jeong, Sang-Hoon;Lee, Jeong-Soo
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.51-51
    • /
    • 2010
  • Recently just as in the automobile industry, shipbuilders also try to reduce material consumption and weight in order to keep operating costs as low as possible and improve the speed of production. Naturally industry is ever searching for welding techniques offering higher power, higher productivity and a better quality. Therefore it is important to have a details research based on the various welding process applied to steel and other materials, and to have the ability both to counsel interested companies and to evaluate the feasibility of implementation of this process. Submerged-arc welding (SAW) process is usually used about 20% of shipbuilding. Similar to gas metal arc welding(GMAW), SAW involves formation of an arc between a continuously-fed bare wire electrode and the work-piece. The process uses a flux to generate protective gases and slag, and to add alloying elements to the weld pool and a shielding gas is not required. Prior to welding, a thin layer of flux powder is placed on the work-piece surface. The arc moves along the joint line and as it does so, excess flux is recycled via a hopper. Remaining fused slag layers can be easily removed after welding. As the arc is completely covered by the flux layer, heat loss is extremely low. This produces a thermal efficiency as high as 60% (compared with 25% for manual metal arc). SAW process offers many advantages compared to conventional CO2 welding process. The main advantages of SAW are higher welding speed, facility of workers, less deformation and better than bead shape & strength of welded joint because there is no visible arc light, welding is spatter-free, fully-mechanized or automatic process, high travel speed, and depth of penetration and chemical composition of the deposited weld metal. However it is difficult to application of thin plate according to high heat input. So this paper has been focused on application of the field according to SAW process for thin plate in ship-structures. For this purpose, It has been decided to optimized welding condition by experiments, relationship between welding parameters and bead shapes, mechanical test such as tensile and bending. Also finite element(FE) based numerical comparison of thermal history and welding residual stress in A-grade 3.2 thickness steel of SAW been made in this study. From the result of this study, It makes substantial saving of time and manufacturing cost and raises the quality of product.

  • PDF

A Study for Mitigating Residual Stress in CRDM Penetration Nozzle Weld (제어봉구동장치 관통노즐 용접부의 잔류응력 완화를 위한 연구)

  • Lee, Seung-Gun;Kim, Jong-Sung;Jin, Tae-Eun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.90-95
    • /
    • 2004
  • In this study, we proposed new method to mitigate tensile welding residual stress for preventing PWSCC in CRDM nozzle. Residual stress analysis using finite element method is performed to confirm benefit of the new method. In case of applying existing method, tensile axial residual stress decrease by about 28% and tensile hoop residual stress decrease by about 33%. In case of applying the new method, tensile axial residual stress decrease by about 32% and tensile hoop residual stress decrease by about 43%. Therefore, we conclude the new proposed method is more effective to prevent PWSCC than existing method.

  • PDF