• Title/Summary/Keyword: penetration mechanism

Search Result 216, Processing Time 0.03 seconds

The Study on the Performance Prediction of Precision Linear Shaped Charge Using Numerical Analysis Method (수치해석 기법을 이용한 정밀선상성형장약의 성능 예측에 관한 연구)

  • Lee, Sieun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.275-284
    • /
    • 2022
  • Linear Shaped Charge(LSC) is widely used as a separation system in the field of weapon system. However, there are some disadvantages that are charging lots of explosives due to lack of uniformity and having difficulties of the design of liner and explosives because of manufacturing process. In order to solve these problems, Precision Linear Shaped Charge(PLSC) that can design a liner independently and charge explosives uniformly has been developed. In this study, PLSC was designed to have a proper liner shape and amount of explosives, and the penetration test of PLSC with different stand-off distance from liner to target was conducted. On the basis of the penetration test results of PLSC, the numerical analysis method using AUTODYN was established and verified. The penetrative mechanism and characteristics of PLSC with targets of different materials was analyzed from experimental and numerical results.

A Study of Action Research Analysis Methods Model of Backdoor Behavior based on Operating Mechanism Diagnosis (동작 메커니즘 진단을 기반으로 한 백도어(backdoor) 행동분석 방법 모델 연구)

  • Na, SangYeob;Noh, SiChoon
    • Convergence Security Journal
    • /
    • v.14 no.2
    • /
    • pp.17-24
    • /
    • 2014
  • Form of backdoor penetration attacks "trapdoor" penetration points to bypass the security features and allow direct access to the data. Backdoor without modifying the source code is available, and even code generation can also be modified after compilation. This approach by rewriting the compiler when you compile the source code to insert a specific area in the back door can be due to the use of the method. Defense operations and the basic structure of the backdoor or off depending on the nature of the damage area can be a little different way. This study is based on the diagnosis of a back door operating mechanism acting backdoor analysis methods derived. Research purposes in advance of the attack patterns of malicious code can respond in a way that is intended to be developed. If we identify the structures of backdoor and the infections patterns through the analysis, in the future we can secure the useful information about malicious behaviors corresponding to hacking attacks.

Chloride diffusion study in different types of concrete using finite element method (FEM)

  • Paul, Sajal K.;Chaudhuri, Subrata;Barai, Sudhirkumar V.
    • Advances in concrete construction
    • /
    • v.2 no.1
    • /
    • pp.39-56
    • /
    • 2014
  • Corrosion in RCC structures is one of the most important factors that affects the structure's durability and subsequently causes reduction of serviceability. The most severe cause of this corrosion is chloride attack. Hence, to prevent this to happen proper understanding of the chloride penetration into concrete structures is necessary. In this study, first the mechanism of this chloride attack is understood and various parameters affecting the process are identified. Then an FEM modelling is carried out for the chloride diffusion process. The effects of fly ash and slag on the diffusion coefficient and chloride penetration depth in various mixes of concretes are also analyzed through integrating Virtual RCPT Lab and FEM.

Evolution of Interfacial Microstructure in Alumina and Ag-Cu-Zr-Sn Brazing Alloy (알루미나/Ag-Cu-Zr-Sn 브레이징 합금계면의 미세조직)

  • Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.481-488
    • /
    • 1998
  • The active metal brazing was applied to bond Alumina and Ni-Cr steel by Ag-Cu-Zr-Sn alloy and the interfacial microstructure and reaction mechanism were investigated. Polycrystalline monoclinic $ZrO_2$ with a very fine grain of 100-150 nm formed at the alumina grain boundary contacted with Zr segregation layer at the interface. The $ZrO_2$ layer containing the inclusions and cracks were developed at the boundary of inclusion/$ZrO_2$ due to the difference in specific volume. The development of $ZrO_2$ at the interface was successfully explained by the preferential penetration of $ZrO_2$ at the interface was successfully explained by the preferential penetration of Zr atoms a higher concentration of oxygen and a high diffusion rate of Al ions into molten brazing alloy.

  • PDF

Experimental Studies on Atomization Characteristics in Diesel Fuel Spray(I) (디젤분무특성에 관한 실험적 연구(I))

  • 박호준;장영준
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.76-84
    • /
    • 1990
  • To study diesel fuel spray behavior, an experimental study was undertaken to investigate injection characteristics in vary ing back pressure and atomization mechanism in a non-evaporating diesel spray. Generally, injection characteristics is the curve of fuel flow plotted against time. The area under this curve is equal to the total quantity of fuel discharged for one injection. The method that measures rate of injection is long tube-type fuel rate indicator. Diesel spray injected into a quiescent gaseous environment under high pressure is observed by taking high speed camera by the focused shadow photographs. The results show that, at the start of injection, as the injected fuel rushes into the quiescent atmosphere the spray angle becomes large. Finally the spray stabilizes at a constant cone angle. Spray penetration length increases with the injection pressure.

  • PDF

The Penetration and Diffusivity of Chloride ion into Concrete using Blended Cement (혼합계시멘트를 사용한 콘크리트의 염화물이온 침투 및 확산특성)

  • Yang, Seung-Kyu;Kim, Dong-Seuk;Um, Tai-Sun;Lee, Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.489-492
    • /
    • 2006
  • A chloride is an important deteriorating factor which governs the durability of the reinforced-concrete structures under marine environments. Also, the main penetration mechanism of chloride ion into concrete is a diffusion phenomenon and numerous methods have been proposed to determine the diffusion coefficient of chloride ion quickly. In this study, electrically accelerated experiments were carried out in order to evaluate diffusion coefficient of the chloride ion into concrete. The methods were diffusion cell test method in which the voltage of 15V(DC) was applied. The type of cement is blended cement in which the admixtures of blast-furnace slag and fly ash were used. In conclusion, the diffusion coefficient of chloride ion is much affected according to mineral admixtures and the diffusion coefficient of ternary blended cement showed very low values. it is presumably said that this result is due to highly densified pore structures by the aid of slag substitution and pozzolanic activity of fly ash.

  • PDF

A Study on the Chloride Ion Diffusion Coefficient of Concrete by Submergence in Salt Water (침적시험에 의한 콘크리트의 염소이온 확산계수 평가)

  • 김동석;양승규;정연식;유재상;이종열;본간건일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.297-300
    • /
    • 2003
  • A chloride is an important deteriorating factor which governs the durability of the reinforced-concrete structures under marine environments. Also, the main penetration mechanism of chloride ion into concrete is a diffusion phenomenon. In this study, It is evaluated the diffusion coefficient of chloride ion in non-steady state by Fick's second law. Submergence method in salt water carried out in this experiment. Two types of cement which is different in mineral composition were used. In addition, the effect of mineral admixtures of blast-furnace slag and meta-kaolin was studied. In conclusion, the diffusion coefficient of chloride ion is much affected according to cement type and mineral admixtures, also, it is proved that meta-kaolin as well as blast-furnace slag is effective in preventing penetration of chloride ion.

  • PDF

Microwave heating of carbon-based solid materials

  • Kim, Teawon;Lee, Jaegeun;Lee, Kun-Hong
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.15-24
    • /
    • 2014
  • As a part of the electromagnetic spectrum, microwaves heat materials fast and efficiently via direct energy transfer, while conventional heating methods rely on conduction and convection. To date, the use of microwave heating in the research of carbon-based materials has been mainly limited to liquid solutions. However, more rapid and efficient heating is possible in electron-rich solid materials, because the target materials absorb the energy of microwaves effectively and exclusively. Carbon-based solid materials are suitable for microwave-heating due to the delocalized pi electrons from sp2-hybridized carbon networks. In this perspective review, research on the microwave heating of carbon-based solid materials is extensively investigated. This review includes basic theories of microwave heating, and applications in carbon nanotubes, graphite and other carbon-based materials. Finally, priority issues are discussed for the advanced use of microwave heating, which have been poorly understood so far: heating mechanism, temperature control, and penetration depth.

Standard Penetration Test Performance in Sandy Deposits (모래지반에서 표준관입시험에 따른 관입거동)

  • Dung, N.T.;Chung, Sung-Gyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.39-48
    • /
    • 2013
  • This paper presents an equation to depict the penetration behavior during the standard penetration test (SPT) in sandy deposits. An energy balance approach is considered and the driving mechanism of the SPT sampler is conceptually modeled as that of a miniature open-ended steel pipe pile into sands. The equation consists of three sets of input parameters including hyperbolic parameters (m and ${\lambda}$) which are difficult to determine. An iterative technique is thus applied to determine the optimized values of m and ${\lambda}$ using three measured values from a routine SPT data. It is verified from a well-documented record that the simulated penetration curves are in good agreement with the measured ones. At a given depth, the increase in m results in the decrease in ${\lambda}$ and the increase in the curvature of the penetration curve as well as the simulated N-value. Generally, the predicted penetration curve becomes nearly straight for the portion of exceeding the seating drive zone, which is more pronounced as soil density increases. Thus, the simulation method can be applied to extrapolating a prematurely completed test data, i.e., to determining the N value equivalent to a 30 cm penetration. A simple linear equation is considered for obtaining similar results.

Evaluation of NOx Removal Efficiency of Photocatalytic Concrete for Road Structure (도로구조물 적용을 위한 광촉매 콘크리트의 질소산화물(NOx) 제거효율 평가)

  • Kim, Young Kyu;Hong, Seong Jae;Lee, Kyung Bae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.49-58
    • /
    • 2014
  • PURPOSES : In areas of high traffic volume, such as expressway across large cities, the amount of nitrogen oxides (NOx) emitted into the atmosphere as air pollution can be significant since NOx gases are the major cause of smog and acid rain. Recently, the importance of NOx removal has arisen in the world. Titanium dioxide ($TiO_2$), that is one of photocatalytic reaction material, is very efficient for removing NOx. The NOx removing mechanism of $TiO_2$ is the reaction of solar photocatalysis. Therefore, $TiO_2$ in road structure concrete need to be contacted with ultraviolet rays (UV) to be activated. In general, $TiO_2$ concretes are produced by replacement of $TiO_2$ as a part of concrete binder. However, considerable portion of $TiO_2$ in concrete cannot contact with the pollutant in the air and UV. Therefore, $TiO_2$ penetration method using the surface penetration agents is attempted as an alternative in order to locate $TiO_2$ to the surface of concrete structure. METHODS : This study aimed to evaluate the NOx removal efficiency of photocatalytic concrete due to various $TiO_2$ application method such as mix with $TiO_2$, surface spray($TiO_2$ penetration method) on hardened concrete and fresh concrete using surface penetration agents. The NOx removal efficiency of $TiO_2$ concrete was confirmed by NOx Analyzing System based on the specification of ISO 22197-1. RESULTS : The NOx removal efficiency of mix with $TiO_2$ increased from 11 to 25% with increasing of replacement ratio from 3 to 7%. In case of surface spray on hardened concrete, the NOx removal efficiency was about 50% due to application amount of $TiO_2$ with surface penetration agents as 300, 500 and 700g/m2. The NOx removal efficiency of surface spray on fresh concrete due to all experimental conditions, on the other hand, which was very low within 10%. CONCLUSIONS : It was known that the $TiO_2$ penetration method as surface spray on hardened concrete was a good alternative in order to remove the NOx gases for concrete road structures.