Browse > Article
http://dx.doi.org/10.5714/CL.2014.15.1.015

Microwave heating of carbon-based solid materials  

Kim, Teawon (Department of Chemical Engineering, Pohang University of Science and Technology)
Lee, Jaegeun (Department of Chemical Engineering, Pohang University of Science and Technology)
Lee, Kun-Hong (Department of Chemical Engineering, Pohang University of Science and Technology)
Publication Information
Carbon letters / v.15, no.1, 2014 , pp. 15-24 More about this Journal
Abstract
As a part of the electromagnetic spectrum, microwaves heat materials fast and efficiently via direct energy transfer, while conventional heating methods rely on conduction and convection. To date, the use of microwave heating in the research of carbon-based materials has been mainly limited to liquid solutions. However, more rapid and efficient heating is possible in electron-rich solid materials, because the target materials absorb the energy of microwaves effectively and exclusively. Carbon-based solid materials are suitable for microwave-heating due to the delocalized pi electrons from sp2-hybridized carbon networks. In this perspective review, research on the microwave heating of carbon-based solid materials is extensively investigated. This review includes basic theories of microwave heating, and applications in carbon nanotubes, graphite and other carbon-based materials. Finally, priority issues are discussed for the advanced use of microwave heating, which have been poorly understood so far: heating mechanism, temperature control, and penetration depth.
Keywords
microwave; carbon nanotube; carbonization; graphite; heat treatment; Maxwell-Wagner-Sillars polarization; penetration depth;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sahoo NG, Rana S, Cho JW, Li L, Chan SH. Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci, 35, 837 (2010). http://dx.doi.org/10.1016/j.progpolymsci.2010.03.002.   DOI   ScienceOn
2 Xie R, Wang J, Yang Y, Jiang K, Li Q, Fan S. Aligned carbon nanotube coating on polyethylene surface formed by microwave radiation. Composites Sci Technol, 72, 85 (2011). http://dx.doi.org/10.1016/j.compscitech.2011.10.003.   DOI
3 Wu T, Pan Y, Liu E, Li L. Carbon nanotube/polypropylene composite particles for microwave welding. J Appl Polym Sci, 126, E283 (2012). http://dx.doi.org/10.1002/app.36832.   DOI
4 Han JT, Kim D, Kim JS, Seol SK, Jeong SY, Jeong HJ, Chang WS, Lee GW, Jung S. Self-passivation of transparent single-walled carbon nanotube films on plastic substrates by microwave-induced rapid nanowelding. Appl Phys Lett, 100, 163120 (2012). http://dx.doi.org/10.1063/1.4704666.   DOI
5 Lin W, Moon KS, Zhang S, Ding Y, Shang J, Chen M, Wong CP. Microwave makes carbon nanotubes less defective. ACS Nano, 4, 1716 (2010). http://dx.doi.org/10.1021/nn901621c.   DOI
6 Wang CY, Chen TH, Chang SC, Cheng SY, Chin TS. Strong carbon-nanotube-polymer bonding by microwave irradiation. Adv Funct Mater, 17, 1979 (2007). http://dx.doi.org/10.1002/adfm.200601011.   DOI
7 Grimes CA, Mungle C, Kouzoudis D, Fang S, Eklund PC. The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem Phys Lett, 319, 460 (2000). http://dx.doi.org/10.1016/S0009-2614(00)00196-2.   DOI
8 Imholt TJ, Dyke CA, Hasslacher B, Perez JM, Price DW, Roberts JA, Scott JB, Wadhawan A, Ye Z, Tour JM. Nanotubes in microwave fields: light emission, intense heat, outgassing, and reconstruction. Chem Mater, 15, 3969 (2003). http://dx.doi.org/10.1021/cm034530g.   DOI
9 Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH. Strong, transparent, multifunctional, carbon nanotube sheets. Science, 309, 1215 (2005). http://dx.doi.org/10.1126/science.1115311.   DOI   ScienceOn
10 Wang CY, Chen TH, Chang SC, Chin TS, Cheng SY. Flexible field emitter made of carbon nanotubes microwave welded onto polymer substrates. Appl Phys Lett, 90, 103111 (2007). http://dx.doi.org/10.1063/1.2711771.   DOI
11 Ganguli N, Krishnan KS. The magnetic and other properties of the free electrons in graphite. Proc Royal Soc London Series A Math Phys Sci, 177, 168 (1941). http://dx.doi.org/10.1098/rspa.1941.0002.   DOI
12 Shim HC, Kwak YK, Han CS, Kim S. Enhancement of adhesion between carbon nanotubes and polymer substrates using microwave irradiation. Scripta Mater, 61, 32 (2009). http://dx.doi.org/10.1016/j.scriptamat.2009.02.060.   DOI
13 Wang H, Feng J, Hu X, Ming Ng K. The formation of hollow poly(methyl methacrylate)/multiwalled carbon nanotube nanocomposite cylinders by microwave irradiation. Nanotechnology, 20, 095601 (2009). http://dx.doi.org/10.1088/0957-4484/20/9/095601.   DOI
14 Zhang X, Jiang K, Feng C, Liu P, Zhang L, Kong J, Zhang T, Li Q, Fan S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater, 18, 1505 (2006). http://dx.doi.org/10.1002/adma.200502528.   DOI   ScienceOn
15 Kappe CO, Dallinger D, Murphree SS. Practical Microwave Synthesis for Organic Chemists: Strategies, Instruments, and Protocols, Wiley-VCH, Weinheim (2009).
16 Gupta M, Wong WL. Microwaves and Metals, John Wiley & Sons, Hoboken, NJ (2007).
17 Wallace PR. The band theory of graphite. Phys Rev, 71, 622 (1947). http://dx.doi.org/10.1103/PhysRev.71.622.   DOI
18 Metaxas AC, Meredith RJ. Industrial Microwave Heating. Reprinted with minor corrections, 1988 ed., P. Peregrinus on behalf of the Institution of Electrical Engineers, London, UK (1988).
19 Sillars RW. The properties of a dielectric containing semiconducting particles of various shapes. J Inst Electr Eng, 80, 378 (1937).
20 Menendez JA, Arenillas A, Fidalgo B, Fernandez Y, Zubizarreta L, Calvo EG, Bermudez JM. Microwave heating processes involving carbon materials. Fuel Process Technol, 91, 1 (2010). http://dx.doi.org/10.1016/j.fuproc.2009.08.021.   DOI
21 Nabais JMV, Carrott PJM, Carrott MMLR, Padre-Eterno AM, Menendez JA, Dominguez A, Ortiz AL. New acrylic monolithic carbon molecular sieves for $O_2/N_2$ and $CO_2/CH_4$ separations. Carbon, 44, 1158 (2006). http://dx.doi.org/10.1016/j.carbon.2005.11.005.   DOI
22 Metaxas AC. Foundations of Electroheat: A Unified Approach, John Wiley and Sons, New York, NY (1996).
23 Li W, Zhang LB, Peng JH, Li N, Zhu XY. Preparation of high surface area activated carbons from tobacco stems with $K_2CO_3$ activation using microwave radiation. Ind Crops Prod, 27, 341 (2008). http://dx.doi.org/10.1016/j.indcrop.2007.11.011.   DOI   ScienceOn
24 Ania CO, Parra JB, Menendez JA, Pis JJ. Microwave-assisted regeneration of activated carbons loaded with pharmaceuticals. Water Res, 41, 3299 (2007). http://dx.doi.org/10.1016/j.watres.2007.05.006.   DOI   ScienceOn
25 Zhang Z, Shan Y, Wang J, Ling H, Zang S, Gao W, Zhao Z, Zhang H. Investigation on the rapid degradation of congo red catalyzed by activated carbon powder under microwave irradiation. J Hazard Mater, 147, 325 (2007). http://dx.doi.org/10.1016/j.jhazmat.2006.12.083.   DOI   ScienceOn
26 Yagmur E, Ozmak M, Aktas Z. A novel method for production of activated carbon from waste tea by chemical activation with microwave energy. Fuel, 87, 3278 (2008). http://dx.doi.org/10.1016/j.fuel.2008.05.005.   DOI
27 Carrott PJM, Nabais JMV, Ribeiro Carrott MML, Menendez JA. Thermal treatments of activated carbon fibres using a microwave furnace. Microporous Mesoporous Mater, 47, 243 (2001). http://dx.doi.org/10.1016/S1387-1811(01)00384-5.   DOI
28 Lester E, Kingman S, Dodds C, Patrick J. The potential for rapid coke making using microwave energy. Fuel, 85, 2057 (2006). http://dx.doi.org/10.1016/j.fuel.2006.04.012.   DOI
29 Li D, Zhang Y, Quan X, Zhao Y. Microwave thermal remediation of crude oil contaminated soil enhanced by carbon fiber. J Environ Sci (China), 21, 1290 (2009). http://dx.doi.org/10.1016/S1001-0742(08)62417-1.   DOI
30 Lester E, Kingman S. The effect of microwave pre-heating on five different coals. Fuel, 83, 1941 (2004). http://dx.doi.org/10.1016/j.fuel.2004.05.006.   DOI   ScienceOn
31 Silver S. Microwave Antenna Theory and Design, P. Peregrinus on behalf of the Institution of Electrical Engineers, London, UK (1984).
32 Tai HS, Jou CJG. Application of granular activated carbon packed-bed reactor in microwave radiation field to treat phenol. Chemosphere, 38, 2667 (1999). http://dx.doi.org/10.1016/S0045-6535(98)00432-9.   DOI
33 Kong Y, Cha CY. Microwave-induced regeneration of $No_x$-saturated char. Energy Fuels, 10, 1245 (1996). http://dx.doi.org/10.1021/ef960060j.   DOI
34 Menendez JA, Menendez EM, Iglesias MJ, Garcia A, Pis JJ. Modification of the surface chemistry of active carbons by means of microwave-induced treatments. Carbon, 37, 1115 (1999). http://dx.doi.org/10.1016/S0008-6223(98)00302-9.   DOI
35 Menendez JA, Menendez EM, Garcia A, Parra JB, Pis JJ. Thermal treatment of active carbons: a comparison between microwave and electrical heating. J Microw Power Electromagn Energy, 34, 137 (1999).   DOI
36 Cha CY, Kim DS. Microwave induced reactions of sulfur dioxide and nitrogen oxides in char and anthracite bed. Carbon, 39, 1159 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00240-2.   DOI
37 Kong Y, Cha CY. $No_x$ abatement with carbon adsorbents and microwave energy. Energy Fuels, 9, 971 (1995). http://dx.doi.org/10.1021/ef00054a006.   DOI
38 Liu X, Quan X, Bo L, Chen S, Zhao Y. Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation. Carbon, 42, 415 (2004). http://dx.doi.org/10.1016/j.carbon.2003.12.032.   DOI   ScienceOn
39 Ania CO, Menendez JA, Parra JB, Pis JJ. Microwave-induced regeneration of activated carbons polluted with phenol. A comparison with conventional thermal regeneration. Carbon, 42, 1383 (2004). http://dx.doi.org/10.1016/j.carbon.2004.01.010.   DOI   ScienceOn
40 Kong Y, Cha CY. Reduction of $No_x$ adsorbed on char with micro-wave energy. Carbon, 34, 1035 (1996). http://dx.doi.org/10.1016/0008-6223(96)00051-6.   DOI   ScienceOn
41 Chuan XY. Graphene-like nanosheets synthesized by natural flaky graphite in Shandong, China. Int Nano Lett, 3, 1 (2013). http://dx.doi.org/10.1186/2228-5326-3-6.   DOI
42 Yu XJ, Wu J, Zhao Q, Cheng XW. Study on the sorption of exfoliated graphite prepared by microwave irradiation. International Conference on Energy and Environment Technology, Guilin, China, 590 (2009). http://dx.doi.org/10.1109/ICEET.2009.610.   DOI
43 Xin G, Hwang W, Kim N, Cho SM, Chae H. A graphene sheet exfoliated with microwave irradiation and interlinked by carbon nanotubes for high-performance transparent flexible electrodes. Nanotechnology, 21, 405201 (2010). http://dx.doi.org/10.1088/0957-4484/21/40/405201.   DOI   ScienceOn
44 Geng Y, Zheng Q, Kim JK. Effects of stage, intercalant species and expansion technique on exfoliation of graphite intercalation compound into graphene sheets. J Nanosci Nanotechnol, 11, 1084 (2011). http://dx.doi.org/10.1166/jnn.2011.3063.   DOI
45 Marsh H. Activated Carbon, Elsevier, Boston, MA (2006).
46 Li Z, Yao Y, Lin Z, Moon K-S, Lin W, Wong C. Ultrafast, dry microwave synthesis of graphene sheets. J Mater Chem, 20, 4781 (2010). http://dx.doi.org/10.1039/C0JM00168F.   DOI
47 Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon, 48, 2118 (2010). http://dx.doi.org/10.1016/j.carbon.2010.02.001.   DOI   ScienceOn
48 Hu H, Zhao Z, Zhou Q, Gogotsi Y, Qiu J. The role of microwave absorption on formation of graphene from graphite oxide. Carbon, 50, 3267 (2012). http://dx.doi.org/10.1016/j.carbon.2011.12.005.   DOI
49 Donnet JB. Carbon Fibers. 3rd ed., Marcel Dekker, New York, NY (1998).
50 Cha CY, Kong Y. Enhancement of $NO_x$ adsorption capacity and rate of char by microwaves. Carbon, 33, 1141 (1995). http://dx.doi.org/10.1016/0008-6223(95)00066-M.   DOI
51 Kwon OY, Choi SW, Park KW, Kwon YB. The preparation of exfoliated graphite by using microwave. J Ind Eng Chem, 9, 743 (2003).
52 Wang J, Peng X, Luan Z, Zhao C. Regeneration of carbon nanotubes exhausted with dye reactive red 3BS using microwave irradiation. J Hazard Mater, 178, 1125 (2010). http://dx.doi.org/10.1016/j.jhazmat.2010.01.112.   DOI
53 Irin F, Shrestha B, Canas JE, Saed MA, Green MJ. Detection of carbon nanotubes in biological samples through microwave-induced heating. Carbon, 50, 4441 (2012). http://dx.doi.org/10.1016/j.carbon.2012.05.022.   DOI
54 Sridhar V, Jeon JH, Oh IK. Synthesis of graphene nano-sheets using eco-friendly chemicals and microwave radiation. Carbon, 48, 2953 (2010). http://dx.doi.org/10.1016/j.carbon.2010.04.034.   DOI
55 Wei T, Fan Z, Luo G, Zheng C, Xie D. A rapid and efficient method to prepare exfoliated graphite by microwave irradiation. Carbon, 47, 337 (2009). http://dx.doi.org/10.1016/j.carbon.2008.10.013.   DOI
56 Viculis LM, Mack JJ, Mayer OM, Hahn HT, Kaner RB. Intercalation and exfoliation routes to graphite nanoplatelets. J Mater Chem, 15, 974 (2005). http://dx.doi.org/10.1039/B413029D.   DOI
57 Tryba B, Morawski AW, Inagaki M. Preparation of exfoliated graphite by microwave irradiation. Carbon, 43, 2417 (2005). http://dx.doi.org/10.1016/j.carbon.2005.04.017.   DOI
58 Falcao EHL, Blair RG, Mack JJ, Viculis LM, Kwon CW, Bendikov M, Kaner RB, Dunn BS, Wudl F. Microwave exfoliation of a graphite intercalation compound. Carbon, 45, 1367 (2007). http://dx.doi.org/10.1016/j.carbon.2007.01.018.   DOI