• Title/Summary/Keyword: penetration effect

Search Result 1,392, Processing Time 0.027 seconds

Numerical Study on Variation of Penetration Performance into Concrete with Reinforcement Modeling Methods (철근 모사 방법에 따른 콘크리트 관통성능 변화에 관한 수치적 연구)

  • Baek, Seung-Ju
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.97-105
    • /
    • 2016
  • This paper discusses the effect of numerical reinforcement modeling methods on the penetration performance of a penetrator into a concrete target. AUTODYN-3D has been used to conduct the numerical penetration analyses. In order to validate the computational approach, experimental data of Hanchak have been compared to a computation result and a reasonably good agreement could be obtained. The strength and the diameter of a reinforcement have been changed to find out the effect of reinforcement modeling methods on the penetration performance. The impact locations and velocities of a penetrator are also changed to investigate the effect of reinforcement modeling methods. Residual velocities of a penetrator are quantitatively compared in detail for the evaluation of reinforcement modeling effects on the penetration performance.

Penetration Behavior of Jack-up Leg with Spudcan for Offshore Wind Turbine to Multi-layered Soils Using Centrifuge Tests

  • Min Jy Lee;Yun Wook Choo
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.30-42
    • /
    • 2024
  • This study examined the jack-up spudcan penetration for a new type of offshore wind substructure newly proposed using the jack-up concept to reduce construction costs. The jack-up spudcan for offshore wind turbines should be designed to penetrate a stable soil layer capable of supporting operational loads. This study evaluated multi-layered soil conditions using centrifuge tests: loose sand over clay and loose sand-clay-dense sand. The penetration resistance profiles of spudcan recorded at the centrifuge tests were compared with the ISO and InSafeJIP methods. In the tests, a spudcan punch-through effect slightly emerged under the sand-over-clay condition, and a spudcan squeezing effect occurred in the clay-over-sand layer. On the other hand, these two effects were not critically predicted using the ISO method, and the InSafeJIP result predicted only punch-through failure. Nevertheless, ISO and InSafeJIP methods were well-matched under the conditions of the clay layer beneath the sand and the penetration resistance profiles at the clay layer of centrifuge tests. Therefore, the ISO and InSafeJIP methods well predict the punch-through effect at the clay layer but have limitations for penetration resistance predictions at shallow depths and strong stratum soil below a weak layer.

A Study on the Mock-up Test of Waterproofing/Root Penetration Resistance Technology for the Application to an Eco-bridge (생태교량 적용을 위한 방수·방근공법의 Mock-up 시험 연구)

  • Seon, Yun-Suk;Choi, Su-Young;Kim, Meong-Ji;Choi, Sung-Min;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.230-231
    • /
    • 2014
  • This study is concerned with the root penetration resistance competence and constructability of a waterproofing and root penetration resistance layer of an eco-bridge which is applied with various types of seeding. For the review of root penetration resistance competence, the competence was tested using herbs, woody plants, and tall trees. As a result, there was no tear of or damage to the waterproofing and root penetration resistance layer as well as the sweeping-down phenomenon of a waterproofing and root penetration resistance layer by soil. Also, the effect of the root growth of herbs, woody plants, and tall trees on the root penetration resistance system was confirmed.

  • PDF

The Effect of the Molecular Weight of Poly(ethylene glycol) on Diffusion through Cellulose (폴리에틸렌글리콜의 분자량에 따른 셀룰로스에서의 확산 거동)

  • 윤기종;우종형;서영삼
    • Textile Coloration and Finishing
    • /
    • v.16 no.1
    • /
    • pp.48-52
    • /
    • 2004
  • Diffusion/penetration rates of finishing agents are not a major criterion in the design of low molecular weight finishing agents. However, in the case of polymeric finishing agents, high molecular weights result in large hydrodynamic volumes and diffusion/penetration of the finishing agent into the substrate may become a critical factor in the design of textile finishing agents. Thus the effect of the molecular weight of a model compound, polyethylene glycol, on its diffusion through a cellulose membrane or cotton fabric is studied. Diffusion experiments of polyethylene glycol of molecular weight 400, 1000, 2000, 4600, 8000, and 10000 through cellulose membrane or fabric was carried out in a glass U-tube diffusion apparatus and the half penetration times and the penetration coefficients were determined. Both the half penetration times and the penetration coefficients exhibited a significant change between molecular weight 2000 and 2500 as the molecular weight of polyethylene glycol increased, suggesting that there is a critical molecular weight above which diffusion/penetration becomes difficult. Based on this study on a model compound, it is suggested that polymeric textile finishing agents can be expected to exhibit similar behavior.

The Numerical Study on Prediction of Diesel Fuel Spray Evolution in a Different Types of Nozzle Geometry (노즐 형상에 따른 디젤 연료 분무의 발달 예측에 관한 수치 해석적 연구)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.169-174
    • /
    • 2017
  • The objective of this study was to verify the experimental and numerical results of spray evolution injected from different types of the nozzle-hole geometries. Spray visualization was taken by high speed camera under the different conditions. For the simulations of spray tip penetration, turbulence, evaporation and break-up model were applied K-zeta-f, Dukowicz and Wave model, respectively. Also, the prediction accuracy of spray tip penetration was increased by varying the spray cone angle. At the same time, the results of this work were compared in terms of spray tip penetration, and SMD characteristics. The numerical results of spray evolution process and spray tip penetration showed good agreement with experimental one.

An Experimental Study on the Salt Damage Resistance of High Durable Concrete (고내구성콘크리트의 염해저항성에 관한 실험적 연구)

  • Yoon, Jai-Hwan;Jaung, Jae-Dong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.73-81
    • /
    • 2003
  • In this paper, salt damage resistance of high durable concrete was tested. High durable concrete was made by using low water cement ratio, chemical admixture called super-durable admixture and mineral admixtures such as fly-ash, ground granulated blast-furnace slag, silica fume. Two kinds of salt damage resistance test were carried out. One method is chloride ion penetration test(ASTM C1202), and the other one is depth of chloride penetration test in saline solution. Test results were as followers: 1) The depth of chloride ion penetration increased exponentially as water cement ratio was increased and time passed. 2) Super-durable admixture had little effect on the improvement of salt damage resistance of concrete. 3) Silica fume and ground granulated blast-furnace slag were effective on salt damage resistance because of pozzolanic reaction, but fly-ash had a little effect.

Optimization of GTAW Parameters for Horizontal Welding of a STS316L Pipe (STS316L 강관의 수평자세 용접을 위한 GTAW 용접조건의 최적화)

  • Lee, Hyoung-Keun;Bang, Kyoung-Sik
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.47-52
    • /
    • 2015
  • In this study, it was tried to analyze the effects of welding parameters on the weld penetration and aspect ratio when a STS316L pipe was welded in a horizontal position by GTAW. Experiments were systematically designed using a L18 orthogonal array, and the effects of welding parameters were statistically analyzed by ANOVA(Analysis of Variance). The shielding gas type has the largest effect on both the penetration and aspect ratio. The welding current type and shielding gas flow rate have a little effect on the penetration, whereas the electrode tip angle has a little effect on the aspect ratio. When welded at a selected welding condition, which is composed of He shielding gas, pulse current of 300/45 A, electrode tip angle of 90o, and shielding gas flow rate of 30 l/min, the estimated interval at least 95 % confidence was $1.99{\pm}0.18mm$ for the penetration and $0.31{\pm}0.04$ for the aspect ratio. From the confirmation experiments, the average penetration and aspect ratio were well agreed with the estimation as 1.96 mm and 0.30, respectively. Additionally, the effects of the welding speed and welding current on the penetration and aspect ratio were experimented and analyzed by linear regression. The penetration was linearly increased with the decrease of the welding speed and with the increase of the welding current, but the aspect ratio showed a tendency to a little decrease with the increase of both the welding speed and current.

Effect of Ambient Conditions on the Spray Behavior and Atomization Characteristics of Biodiesel-ethanol Blended Fuels (분위기 조건이 바이오디젤과 에탄올 혼합연료의 분무 거동 및 미립화 특성에 미치는 영향)

  • Park, Su-Han;Kim, Hyung-Jun;Suh, Hyun-Kyu;Chon, Mun-Soo;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.180-186
    • /
    • 2008
  • The aim of this work is to investigate the effect of ambient conditions on the spray behavior of biodiesel-ethanol blended fuels. In order to analyze the spray behavior, spray tip penetration and spray cone angle were obtained from the visualization system and the effects of ethanol blending are compared macroscopic characteristics with the numerical results. It was reveled that the ethanol contents in biodiesel-ethanol blended fuels affect the spray tip penetration a little and increased the spray cone angle. Increased ambient pressure induced the decrease of the spray tip penetration, and the increased ambient temperature lead to the increase of the spray tip penetration. In addition, the increased ambient temperature promoted the vaporization and atomization of spray with the effect of increasing ethanol fuel.

  • PDF

A study on the effect of injection pressure and ambient pressure for the growth of impinging spray (충돌 분무의 성장에 미치는 분사압과 배압의 영향에 관한 연구)

  • Cha, Geon-Jong;Seo, Gyeong-Il;Kim, Deok-Jul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1458-1465
    • /
    • 1997
  • This study investigated the effects of pressure on the growth of an impinging spray. We obtained the frozen images which were scattered by Nd ; YAG laser light (pulse width : 7 ns) using synchronization circuit made in the laboratory. For an impinging spray a growth of the penetration length was progressed with increase of the injection pressure but an ambient pressure restrained its growth. The effect of an ambient pressure on penetration was larger than that of an injection pressure. The pressure ratio had an effect on the penetration growth rate. The thickness growth rate depended on both the injection pressure and the ambient pressure compositively. A lower injection pressure or a higher ambient pressure was required for spatial distribution of impinging spray.

Pressure Effect on Safranine Penetration in Some Hardwood Species

  • Chong, Song-Ho;Ahmed, Sheikh Ali;Park, Byung-Su;Chun, Su-Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.18 no.2
    • /
    • pp.111-119
    • /
    • 2007
  • An experiment was conducted to know the safranine impregnation distance from surface to inward using 6 different hardwood species. During impregnation, 3 parameters were applied-vacuum, pressure and soaking time. Only vacuum treatment did not increase the permeability of wood. Vacuum followed by pressure increased the penetration depth of safranine in radial, tangential and longitudinal direction. Longitudinal penetration was found easy to impregnate. Comparing with radial and tangential direction, radial penetration was found easy. There was a striking difference among sapwood and heartwood permeability. Safranine input depth was found highest in diffused porous wood rather than in ring porous wood. At increased vacuum and pressure, safranine penetration was found easy.

  • PDF